
A Comparison of Bug-Finding Tools

John R. Hott

April 2, 2007

Abstract

Software Engineering has shown us that it is much cheaper to find errors in code
as early as possible, and that found early, they are much easier to fix [4]. This has led
to the development of many compile-time tools for finding bugs early.

This paper compares some of the tools provided on sourceforge.net. Student projects
were tested with each of the tools to see if the tool was helpful.

Of the tools discussed, PMD was the most powerful. It allows the creation of custom
code rules. PMD also allows the code to be checked for duplicate code. Student projects
from CS 301, Fall 2005, were tested with PMD and analyzed for duplicate code, and
trends were scrutinized. PMD found many bugs in the code, showing its usefulness.

1 Introduction

Sourceforge.net currently lists 408 tools under the category of Quality Assurance. These
tools range from bug finding tools to issue trackers for developers of large systems. Of these
408, only a few dealt specifically with finding bugs in Java source code. However, for most
of these tools, the tool was not mature enough to test. Ultimately, there were four tools that
met our requirements.

1. PMD: PMD is a static checker that parses the Java source code into an abstract syntax
tree. It scans the abstract syntax tree looking for violations of the rules supplied. It
provides helpful output, but also provides some false positives [11].

2. JCSC: JCSC is a style checker that determines if the code has followed all coding
conventions described in its rules. This tool provides a helpful GUI interface that
allows the configuration of custom coding standards [8]. This tool was not successful
in finding bugs.

3. SISSy: SISSy, Structural Investigation of Software Systems, is an automated static
analysis tool that determines the maintainability of object oriented code, written in
Java, C++, or Delphi. It can detect violations of many common object oriented
principles in code, and reports them [12]. We did not pursue SISSy further because it
only writes its output to SQL databases and was unable to run on our systems.

4. Purity: Purity checks Java VM bytecode for pure and impure methods. It lists all the
methods in the bytecode, their parameters, return values, and whether or not they are
pure, as described in Section 5. It provides only one service, purity checking, but it
performs this job well.

1

The next section describes the code suites used to exercise the tools. Then we discuss
the use of PMD, JCSC, and Purity on these code suites.

2 Test Suite

2.1 Student Solitaire Projects

The major test suite for these tools was student solitaire projects from CS 301, Software
Development, in fall 2005. Students, by the final project, implemented three distinct solitaire
games written in Java. This was done by having the students create a framework in which
they could implement new games without rewriting much code.

There were six projects that built up to the final project. They were:

1-3. Canfield: Students were required to build the model of the Model-View-Controller
framework in projects 1 and 2. They also were required to implement the GUI in
project 3.

4. Freecell: In this project, students were required to add a Freecell game to their project.
Their goal was to also split their code into shared classes and classes unique to each
game. This also arranged shared classes into a solitaire package.

5. Klondike: Students were required to add the Klondike game to their projects. Students
were given a new class for this project, WMSolitaire, which provided the main function
and started their games. They were allowed to modify this class. Project 5 created
the gamegui package to contain view-controller classes of their projects. This package
separated the GUI from the model, making testing of the model easier since the GUI
cannot be systematically tested.

6. Extra Features: For project 6, students were required to implement a toolbar, unlimited
undo, a timer, and a card counter into their solitaire game framework.

Eventually, students were required to have complete test coverage of their model classes,
except the instructor-supplied Deck.java. This did not include the GUI classes, since GUI
code contains elements that are drawn on the screen, such as cards, which cannot be tested
in an automated manner with JUnit. Therefore, the GUI classes were separated into the
gamegui package. The rest of the code was migrated into two packages, solitaire contain-
ing the model classes, and a tests package that includes JUnit test classes. Students were
required to use JUnit [9] for their tests.

The requirement of complete test coverage of the model was intended to motivate the
students to reduce duplicate code and increase code quality. If students wrote and designed
their code well, it will require less test cases to ensure proper functioning. Also, reducing
duplicate code removes the need to produce identical test cases for both copies. The students,
however, did not have a tool such as PMD to detect duplicate code, so reducing the number
of test cases was the only motivator for students to reduce code size.

The final grading criteria for the project included economy of code in non-test classes,
good object-oriented code in non-test classes, and quality of code. The project specifically
stated to avoid magic numbers and if and switch statements if possible, especially nested
ones. It also required good use of abstract classes such as Pile and Game, good use of

2

the strategy pattern, and code reuse. Lastly, documentation and a FindBugs test with no
serious violations reported were required. FindBugs is a bug finding tool in Java, based on
bug patterns, code idioms that that are often errors [6].

2.2 Linked-List Implementation in Java

Purity required more time to test code, since it checks for the purity of methods and any
methods invoked by them. This can produce the tracing of a large call-tree, requiring a
longer runtime. Therefore a smaller suite was needed to exercise Purity to get a manageable
runtime and output.

Purity was tested on student code from CS 241, Data Structures, from spring 2006. The
project used was an implementation of a phone directory as a linked list. Since this project
dealt mainly with manipulating memory, it was a perfect testbed for Purity.

In this project, students were required to implement a one-way linearly-linked list. Stu-
dents were given an stripped-down class, KWLinkedList.java, with two private fields:

• size, the number of currently stored elements, and

• head which is a pointer to the head of the linked list.

The students were required to implement

• a size function to return the size of the list,

• an indexOf method which searches the list for an element and returns the index of
that element in the list or -1 if not found,

• get and set methods to get and set elements, respectively, at a certain position in the
list, and

• add and remove methods to add an object or remove an object, respectively, at a
certain position.

Also required was the implementation of an iterator for KWLinkedList.java, with the
usual functions hasNext, next, and remove defined by the iterator interface..

Students were not allowed to add any new instance variables, constructors, classes, or
public methods to any of the classes. This prevents the students from accessing public fields,
such as int size, to avoid the required functions, such as the size() function. Their code
was also required to not produce any output in any method.

3 PMD

PMD (which is not an acronym) is a powerful static checker of Java source code. It comes
from Tom Copeland, lead developer, as well as over 100 other contributors. PMD may be
invoked in two ways. First, it can be run in its normal mode, which tests included code
against the rules. The second mode allows for checking of duplicate code.

3

3.1 PMD Static Checker

PMD is built on the model of extensible rule sets. Its current version, 3.9, comes with 27
rulesets, ranging from 0 to 42 rules, each containing an average of 5 rules. Each ruleset
checks the source code for specific problems or non-conformities. PMD’s rulesets include
checks for both semantic and syntactic problems. It can check for

• unused code,

• naming convention problems,

• excessive coupling of methods,

• code size problems,

• and problems in JUnit tests.

It even contains tests that some developers do not approve of in a controversial ruleset.
This ruleset includes tests for: unnecessary constructors, null assignments, having at least
one constructor, unnecessary parentheses, a field used by only one method (which could be
made local), not using explicit scoping of classes and methods, and an analysis of dataflow
anomalies [11].

In addition to the large collection of bundled rulesets, PMD allows the writing of custom
rulesets to suit specific needs. These rulesets can be written in Java or in XML documents.
Java rules are more complicated to write and were the original format for PMD rules. An
XML parser was added to PMD to allow for Xpath rules to be included. These rules are
written in XML and do not require quality assurance to understand the PMD Java code
which implements the rules.

PMD uses a JavaCC parser which parses the Java source code into an Abstract Syntax
Tree. Figure 1 contains a small sample of source code which PMD parses into the abstract
syntax tree found in Figure 2. The Java example contains only one class, with two fields and
one method, main. This 12 line source code is transformed into the 96 line abstract syntax
tree in Figure 2.

We can see that the abstract syntax tree is rooted at a CompilationUnit. Under that
entry, we can see ClassOrInterfaceDeclaration, which is a class declaration with the
name MyClass. In the body of this class, the first entry is a field declaration, declared as
package private, of a referenced type, class Vector. Those first 11 lines of the abstract syntax
tree describe the first two lines of our sample source code.

PMD then browses the abstract syntax tree, and at each element in the tree checks the
rulesets given for a rule that applies to that element. If a rule applies, PMD will execute the
rule code for that element.

The authors provide a GUI that shows Java code parsed into the abstract syntax tree,
giving a picture of the program. This GUI also allows the visualization of an element’s
position in the tree, giving aid in writing a custom rule. The most complicated task for
writing rulesets is accessing the elements in the abstract syntax tree, since each element is a
Java class type. This makes finding the elements of the tree, such as Expression difficult
because the class type of the object must be found.

PMD’s static checker can be executed over a Java source file, a directory, or a .jar file
containing multiple source files. The rulesets are included using command line arguments.
If no rulesets are specified, PMD runs the basic rules.

4

class MyClass {

Vector v;

Integer a;

int main() {

for (int i = 1; i < 25; i++) {

int b = 5;

int c = 56;

b = b + 34 + c;

}

}

}

Figure 1: Sample Java code.

To test student code, PMD was invoked using the following command,

pmd.sh solitaire.jar text basic,imports,unusedcode,controversial,clone,coupling,design,braces,codesize

This includes the basic, import usage, unused code, coupling, brace usage, cloning, code size,
and controversial rulesets in testing. The code from the solitaire package for each student
was stored in solitaire.jar.

PMD was run in normal mode, using the rulesets listed above. GUI code and students’
test cases were overlooked in testing for bugs since that code was cut for prior testing, and
due to an oversight, was not reintroduced.

PMD found a significant number of problems in the code tested. These problems included
some serious risks as well as false positives. The false positives are usually cautious behavior
that should be considered. A complete listing of the errors found in Project 6 and number
of occurrences of each are shown in Figure 3. This figure shows each of the error messages
received from PMD in rows, with the columns representing the students, A through P. Each
column shows the number of times that student received every warning message. The last
two columns show the total number of times the warning appeared over all the students code
and the total number of students that received each warning message at least once.

In this list, we see many errors and warnings. The most common warnings tended to be
interesting, but mostly of little concern. From the table, we can see that the most common
warnings given by PMD are calling super() in a constructor and avoiding using ifs and fors
without curly braces. These warnings were given for every student. The warning “Avoid
using if statements without curly braces,” for example, was produced for every student’s
code, and a total of 238 times. Student O’s code only produced this warning 2 times, while
Student K’s code produced the warning 38 times.

PMD warns that a private field could be made final since that field was only initialized
in its declaration or the constructor. Fifteen student projects produced this warning a total
of 188 times.

We also see that 3 students imported, using import, code from their current package and
3 students imported files they did not use with Student C in both groups. We can also see
that 4 students (A, E, N, and O) have deeply nested if statements.

Most of these warnings are important to cover, but not of much concern. They are good
practices, but code will still work correctly if we do not follow these practices. However,

5

CompilationUnit

TypeDeclaration

ClassOrInterfaceDeclaration(MyClass)(class)

ClassOrInterfaceBody

ClassOrInterfaceBodyDeclaration

FieldDeclaration:(package private)

Type

ReferenceType

ClassOrInterfaceType:Vector

VariableDeclarator

VariableDeclaratorId:v

ClassOrInterfaceBodyDeclaration

FieldDeclaration:(package private)

Type

ReferenceType

ClassOrInterfaceType:Integer

VariableDeclarator

VariableDeclaratorId:a

ClassOrInterfaceBodyDeclaration

MethodDeclaration:(package private)

ResultType

Type

PrimitiveType:int

MethodDeclarator:main

FormalParameters

Block

BlockStatement

Statement

ForStatement

ForInit

LocalVariableDeclaration

Type

PrimitiveType:int

VariableDeclarator

VariableDeclaratorId:i

VariableInitializer

Expression

PrimaryExpression

PrimaryPrefix

Literal:1

Expression

RelationalExpression:<

PrimaryExpression

PrimaryPrefix

Name:i

PrimaryExpression

PrimaryPrefix

Literal:25

ForUpdate

StatementExpressionList

StatementExpression

PostfixExpression:++

PrimaryExpression

PrimaryPrefix

Name:i

Statement

Block

BlockStatement

LocalVariableDeclaration

Type

PrimitiveType:int

VariableDeclarator

VariableDeclaratorId:b

VariableInitializer

Expression

PrimaryExpression

PrimaryPrefix

Literal:5

BlockStatement

LocalVariableDeclaration

Type

PrimitiveType:int

VariableDeclarator

VariableDeclaratorId:c

VariableInitializer

Expression

PrimaryExpression

PrimaryPrefix

Literal:56

BlockStatement

Statement

StatementExpression

PrimaryExpression

PrimaryPrefix

Name:b

AssignmentOperator:=(simple)

Expression

AdditiveExpression:+

PrimaryExpression

PrimaryPrefix

Name:b

PrimaryExpression

PrimaryPrefix

Literal:34

PrimaryExpression

PrimaryPrefix

Name:c

Figure 2: AST PMD generated for the Java code in Figure 1.

6

Error Message A B C D E F G H I J K L M N O P Total
of Students

with Error

It is a good practice to call super() in a constructor 4 3 6 16 4 3 6 3 8 2 5 2 6 4 1 3 76 16

Avoid using for statements without curly braces 18 18 2 3 20 20 10 2 17 11 1 1 18 14 9 10 174 16

Avoid using if statements without curly braces 16 18 9 12 6 13 22 18 24 3 38 6 11 26 2 14 238 16

Avoid using if...else statements without curly braces 24 23 24 8 36 21 4 13 5 4 16 3 30 4 16 10 241 16

Private field could be made final; it is only initialized in the

declaration or constructor. 17 13 13 3 17 2 27 14 25 4 24 1 7 15 6 188 15

Avoid if (x != y) ..; else ..; 3 6 3 1 9 2 6 1 1 1 1 6 1 4 8 53 15

A method should have only one exit point, and that should be the

last statement in the method 6 10 9 53 16 24 28 17 25 42 15 27 16 6 5 299 15

Each class should declare at least one constructor 2 1 9 1 8 6 10 12 13 6 2 1 12 8 91 14

Use explicit scoping instead of the default package private level 3 2 8 3 3 12 2 1 1 1 24 1 1 62 13

Assigning an Object to null is a code smell. Consider refactoring. 1 3 2 1 5 1 1 1 1 4 4 1 25 12

Perhaps could be replaced by a local variable. 3 4 8 2 4 12 5 1 1 5 2 4 51 12

Document empty method 2 3 3 3 1 1 4 1 1 1 3 23 11

These nested if statements could be combined 3 1 3 3 1 1 1 1 2 16 9

Avoid using while statements without curly braces 7 5 5 1 2 6 3 2 31 8

Avoid unnecessary constructors - the compiler will generate these

for you 5 7 1 2 6 6 11 6 44 8

Avoid modifiers which are implied by the context 1 1 1 1 6 9 1 2 22 8

Avoid unnecessary comparisons in boolean expressions 11 3 2 2 10 2 30 6

When doing a String.toLowerCase()/toUpperCase() call, use a

Locale 1 1 1 1 1 2 7 6

This statement may have some unnecessary parentheses 3 1 1 1 1 5 12 6

Avoid unnecessary if..then..else statements when returning a 2 5 5 1 3 16 5

Avoid unused local variables such as 1 4 3 3 1 12 5

Avoid unused private fields such as 1 2 3 1 1 8 5

Document empty constructor 2 2 1 2 1 8 5

Deeply nested if..then statements are hard to read 1 1 2 1 5 4

Avoid reassigning parameters such as 5 1 1 2 9 4

This final field could be made static 1 1 1 1 4 4

Overridable method called during object construction 6 3 1 3 13 4

The class has a Cyclomatic Complexity 4 1 1 6 3

The method has a Cyclomatic Complexity 7 1 1 9 3

Switch statements should have a default label 5 1 1 7 3

Use equals() to compare object references. 5 1 3 9 3

Use bitwise inversion to invert boolean values 1 1 1 3 3

Avoid unused imports such as 2 1 2 5 3

No need to import a type that's in the same package 1 2 1 4 3

Consider simply returning the value vs storing it in local variable 5 2 1 8 3

Possible unsafe assignment to a non-final static field in a constructor. 1 3 2 6 3

All methods are static. Consider using Singleton instead.

Alternatively, you could add a private constructor or make the class

abstract to silence this warning. 1 1 2 2

Avoid duplicate imports such as 1 1 2 2

An empty statement (semicolon) not part of a loop 2 1 3 2

Avoid unused constructor parameters such as 2 3 5 2

This abstract class does not have any abstract methods 1 1 2 2

Avoid unnecessary return statements 2 3 5 2

Avoid empty if statements 1 1 2 2

Too many fields 1 1 2 2

Avoid empty while statements 1 1 1

Avoid empty catch blocks 1 1 1

Student

Figure 3: PMD results for project 6.

7

some examples are more interesting, in which errors can be clearly seen and in which PMD
becomes very helpful to the programmer. However most of the interesting cases are those
that PMD only finds in one student’s work or that is found only a few times.

Student K’s project was given the error “Avoid empty if statements,” which seems like
a harmless error, however, upon surveying his code, we find

if(!dpile.isEmpty());{

tpile[num].push(dpile.pop());

GameMove gmove = new GameMove(dpile, tpile[num]);

this.addToUndoStack(gmove);

this.addToStackBool(0);

return true;

}

which is clearly an error, since this code is always executed, no matter the outcome of the if
test.

Another less severe example comes from Student N’s code, which received the warning
message “too many fields” assigned to their Freecell game code. Upon inspection, we see
the following list of fields in their FreecellGame class, which extends the Game class, seen
on the left in Figure 4.

public FreecellHomecell homecell1 = new FreecellHomecell();

public FreecellHomecell homecell2 = new FreecellHomecell();

public FreecellHomecell homecell3 = new FreecellHomecell();

public FreecellHomecell homecell4 = new FreecellHomecell();

public FreecellTableau tableau1 = new FreecellTableau();

public FreecellTableau tableau2 = new FreecellTableau();

public FreecellTableau tableau3 = new FreecellTableau();

public FreecellTableau tableau4 = new FreecellTableau();

public FreecellTableau tableau5 = new FreecellTableau();

public FreecellTableau tableau6 = new FreecellTableau();

public FreecellTableau tableau7 = new FreecellTableau();

public FreecellTableau tableau8 = new FreecellTableau();

public FreecellPile freecell1 = new FreecellPile();

public FreecellPile freecell2 = new FreecellPile();

public FreecellPile freecell3 = new FreecellPile();

public FreecellPile freecell4 = new FreecellPile();

public Homecell homecells[4];

public Tableau tableaus[8];

public Pile freecells[4];

...

for (i = 0; i < 4; i++) {

homecells[i] = new FreecellHomecell();

freecells[i] = new FreecellPile();

}

for (i = 0; i < 8; i++)

tableaus[i] = new FreecellTableau();

Figure 4: Left: Student N’s FreecellTableau code. Right: Improved version of the same code
snippet.

While this does not produce an error during runtime, it is a concern because it increases
the complexity of the student’s code. This method of declaration also does not allow the
student to loop over the homecells and tableaus, as implementing the game would necessitate.
The code could be correctly, and more easily be written as the code on the right above. This
version creates the card piles in arrays and initializes them in loops. From later code in
the Freecell game, seen in Figure 5, the student is required to include multiple identical
statements in the constructor, such as the code on the left. The fields could, then, be
declared as arrays or alternatively could be declared in the Game class, with the Freecell
game class extending those it needs.

This example is also not correct, since the students were required to deal one card per
pile until all cards were discarded. The code above deals all cards to a pile, then repeats
per pile. An example of how this code could correctly and better be written is shown in the
example on the right, which uses the arrays created in the last code segment and loops over
them.

8

for (int i = 0; i < 7; i++)

tableau1.addCard(deck.getCard());

for (int i = 0; i < 7; i++)

tableau2.addCard(deck.getCard());

for (int i = 0; i < 7; i++)

tableau3.addCard(deck.getCard());

for (int i = 0; i < 7; i++)

tableau4.addCard(deck.getCard());

for (int i = 0; i < 6; i++)

tableau5.addCard(deck.getCard());

for (int i = 0; i < 6; i++)

tableau6.addCard(deck.getCard());

for (int i = 0; i < 6; i++)

tableau7.addCard(deck.getCard());

for (int i = 0; i < 6; i++)

tableau8.addCard(deck.getCard());

int count = 0;

for (int i = 0; i < 7; i++) {

for (int j = 0; j < 8; j++) {

tableaus[j].addCard(deck.getCard());

count++;

if (count == 52)

return;

}

}

Figure 5: Left: Student N’s card dealing code. Right: Correct version of the same code
snippet.

Therefore, we can see that PMD is a powerful static checker and can be very helpful in
finding code smells [7], which are practices that usually indicate possible bugs. It can even
discover bugs in relatively large projects.

Even though it produces a large volume of warnings to the programmer, some that the
programmer may wish to overlook for ease of programming, it does identify some serious
problems. All of the messages should be considered in finding problems.

3.2 Custom Rulesets

I have implemented two rulesets in Java for PMD. One provides type checking for PMD,
and another allows a programmer to write simple text files describing methods or fields as
pure or immutable. I will describe what pure methods are in the discussion of Purity in
Section 5. An immutable field is a variable that should never be changed. A description of
these rulesets can be found in the Appendix in Section 7.1.

Understanding how to write rulesets in Java gave a clear view of how PMD works. Writing
rulesets required the knowledge of how PMD would step through the abstract syntax tree,
and what methods it would execute. It also required understanding how to derive the type
of a class object. When PMD steps through the abstract syntax tree, at each element it
parses the rulesets given for a method that should be called. During the execution of that
method, the entire abstract syntax tree is available. For most rules, it is necessary to parse
through the children or direct parents of the current element of the tree to correctly execute
the rule. This is tedious and difficult in most cases.

3.3 PMD for Duplicate Code

PMD can also check for duplicate code segments. Its duplicate code mode is invoked as

java -cp pmd-3.7.jar net.sourceforge.pmd.cpd.CPD --minimum-tokens 50 --files solitaire/ --format text

9

This tests the projects for duplicate code with a minimum of 50 tokens that match.
A token is any series of characters that form a logical item in a Java program such as for,

class, or method name helloWorld. Comments are not included in token counts. Con-
sistent with standard compiling technology [1], CPD also skips import statements, package
statements, and semicolons [11].

This will single out true duplications in a project, however, if there are three or more
sections of code duplicated, PMD will list each pair separately. Therefore, PMD may report
code duplicated more than once many times in its output, once for each pair of duplicates.
This is acceptable for our purposes, since it allowed us to identify if some of the repetitions
were removed.

Students were required to have complete test coverage of their projects outside of the
GUI classes. Therefore, duplicate code tests are appropriate to show whether students pared
down their code in order to write fewer test cases. These tests would show that the class
impacted the students. Because the project did not require test coverage of GUI code,
student GUI and test code were not considered.

PMD counts duplications of code in both number of duplicate tokens and the number
of lines duplicated. Using 50 as the minimum number of duplicate tokens, PMD was run
over all the students’ projects for project numbers 3, 4, 5, and 6, with the results given in
Figure 6.

This table shows each student’s results as a row, for students A through O, and the
results for each project as columns. Each project is further broken down into duplicate lines
and duplicate tokens. The averages and maximum duplicate lines and tokens are shown
for each student, as are the number of students that have zero lines or tokens of duplicate
code. The last column displays the number of duplicate tokens in project 6 subtracted by
the student’s maximum number of duplicate tokens over all four projects.

As an example, consider student G. In project 3, student G had 22 lines of duplicate
code containing 51 tokens. By project 4, the student reduced their lines of duplicate code
to 14, but increased the number of duplicate tokens to 57. Tokens are a better indication of
duplicate code, since they do not include white space. For project 5, student G’s duplicate
code exploded to 402 tokens and 111 lines of code. This is most likely due to the new
requirements of project 5. However, project 6, which required complete test coverage of the
non-GUI code, shows student G reducing his duplicate code by 100 tokens, even though the
number of duplicate lines increased by 8 to 65. Therefore, we can see that requiring complete
test coverage was effective in getting this student to reduce the amount of duplicate code in
his project. We can see similar results from many other students in this table.

Overall, we see from the right-most column that most students reduced their total number
of duplicate tokens by project 6. Of the 15 students tested, 11 reduced their amounts of
duplicate code or kept it consistent across the four projects. Only students E, H, J, and L
significantly increased the total number of duplicate tokens by project 6. This clearly shows
that requiring complete test coverage was effective at persuading students to clean up code
and increase their code reuse, as was expected.

Therefore, we can see that PMD is an effective tool, both as a static checker and a way
of measuring duplicate code. PMD is very effective at identifying problems and potential
bugs in Java code, while at the same time it can be used to identify duplicate code and help
reduce code complexity and the number of tests required for complete test coverage of that
code.

10

Project 6 - Max

STUDENT Lines Tokens Lines Tokens Lines Tokens Lines Tokens Tokens

A 0 0 44 135 110 497 117 444 -53

B 159 334 265 665 272 724 288 757 33

C 0 0 0 0 32 78 0 0 -78

D 19 146 120 554 212 760 229 801 41

E 23 56 0 0 24 97 124 350 253

F 0 0 0 0 19 85 20 95 10

G 22 51 14 57 111 402 65 302 -100

H 64 200 0 0 37 163 117 510 310

I 33 121 22 51 0 0 0 0 -121

J 25 94 28 97 108 419 141 510 91

K 0 0 0 0 0 0 0 0 0

L 0 0 0 0 63 251 64 344 93

M 0 0 43 232 212 833 75 302 -531

N 0 0 0 0 12 109 4 55 -54

O 0 0 40 239 76 395 19 61 -334

Average 23 67 38 135 86 321 84 302 Average: -29

Zeros 8 8 7 7 2 2 3 3 Zero or below: 8

Less than 50: 11

Max 159 334 265 665 272 833 288 801 Maximum: 310

Minimum: -531

Proj 3 Proj 4 Proj 5 Proj 6

Figure 6: PMD duplicate code results.

4 JCSC

JCSC, the Java Coding Standard Checker, is a good static checker to ensure that code meets
a required set of coding guidelines. This checker is a highly configurable tester of coding
guidelines, but is not as effective at finding bugs. It will check for syntactic violations of the
coding guidelines.

For quality assurance personnel, this tool provides an easy interface for ensuring coding
standards. PMD allows for quality assurance to write rules in XML or Java that will enforce
standards; however, JCSC contains a GUI that makes standards enforcing much easier. The
GUI can be seen in Figure 7. In this screenshot, the Field tab is shown with rule options
about fields of Java classes. Some of the examples from this screenshot include that only one
field declaration is allowed per line, protected and package fields are allowed while public
fields are not allowed, and rules about naming conventions of fields. The right pane shows
a description and an example of the currently selected rule. A user of this GUI can simply
edit the definition of the rule or use the yellow diamonds to turn the rule on or off, without
having to know how to write code.

JCSC was run with the default coding standard rules. It performed as expected, listing
many syntactic violations, but nothing as significant or as influential as PMD. The most
common violations JCSC found were \t tab characters inserted by Eclipse which are not
allowed, that spaces are required after a statement keyword, that lines were too long, and
that required javadoc tags were missing for elements. All of these errors are listed in Figure 8,
which shows error messages in the rows, with the number of instances of each message for
students A through P in the columns. The last two columns show the total number of times
the message was given across all students and the number of students who received that
message.

From this figure, we can see that JCSC does not allow tabs, which all students used.

11

Figure 7: Configuration GUI for JCSC, found in jcsc.jar.

JCSC found 18,395 tabs, which were inserted by Eclipse automatically, and reported each
as an error. Ten students declared more than one field per line, with student O repeating
it five times. The violations identified by JCSC tend to be stylistic concerns or problems
with JavaDoc documentation. For example, it did not report the empty if statement or
give warning to the bug that was in Student K’s code.

Overall, JCSC is not useful for finding bugs as a project is compiled, however, its easy-
to-use interface allows it to be implemented into quality assurance tasks more easily than
PMD, and it provides enough power to check for coding standards. This checker will find
some minute bugs, but not the larger ones that PMD identifies. Therefore, the next step for
a team using JCSC would be to incorporate some manner of testing using a more powerful
static checker, such as PMD.

5 Purity

Purity is an interesting tool, and should prove helpful at finding methods and classes that
change fields or objects that they should not. These changes can cause issues such as memory
access problems due to bad pointers, bad indexing such as changing the size variable of an
array in the getSize() method, and others.

Before going into Purity in detail, we must first discuss the meaning of pure and impure.
A method is considered pure if, within the scope of that method, it does not change any field
or call other functions that change fields created outside of that method. For example, the
function foo() in Figure 9 is pure. Alternatively, if a method changes a field declared outside
its scope, then it is considered impure. As an example of an impure method, consider the

12

JCSC Error A B C D E F G H I J K L M N O P Total Count

Not allowed general import statement (import java.util.*) 3 1 3 1 1 6 3 2 2 1 3 1 27 12

is a tab character which is not allowed 2004 1736 1497 23 1591 31 549 1556 744 931 1173 664 1447 2107 1058 1284 18395 16

A space after statement keyword is mandatory 98 71 1 77 67 11 47 87 27 73 13 6 1 579 13

line is too long 0..80 characters are allowed 48 34 18 31 26 6 12 40 5 7 7 15 17 34 23 9 332 16

switch statement doesn block which is required 5 1 1 7 3

this complex loop expression is not allowed 23 3 9 6 1 7 3 15 5 10 18 13 8 11 132 14

JavaDocs Tags are in wrong order. Order 10 28 6 16 11 35 1 11 27 7 1 153 11

Not allowed general import statement (import javax.swing.*) 2 3 1 1 5 1 2 2 1 2 1 3 3 3 30 14

only 1 field declaration per line is allowed 1 2 3 3 4 4 1 1 1 5 25 10

method declaration 1 1 1

public method declaration JavaDoc does not provide the required tag 13 3 12 4 16 33 7 3 47 21 7 50 3 22 15 256 15

public method doesn't provide any JavaDoc 16 1 15 4 3 37 9 49 2 66 4 21 15 242 13

class Declaration JavaDoc does not provide the required tag 6 4 16 4 28 18 2 8 2 4 2 94 11

public constructor declaration does not provide any JavaDoc 4 6 8 2 8 6 2 14 1 1 1 53 11

public method declaration JavaDoc does not provide the required tag

for all parameters 6 8 1 6 23 7 4 24 7 4 30 5 3 8 136 14

public abstract method declaration JavaDoc does not provide the

required tag for all parameters 3 1 2 3 9 4

public abstract method declaration JavaDoc does not provide the

required tag 8 1 2 1 6 1 19 6

public abstract method doesn't provide any JavaDoc 9 1 2 6 18 4

Not allowed general import statement (import java.awt.event.*) 1 1 1 1 4 4

public static method declaration JavaDoc does not provide the

required tag for all parameters 1 1 1 3 3

public constructor declaration JavaDoc does not provide the required

tag for all parameters 1 1 4 2 6 6 4 1 8 3 1 4 41 12

field declaration modifiers should have the following

order[pub|pro|pri]->[abstract]->[static]->[final]->[transient]- 2 2 3 1 3 3 1 15 7

static final field decalration is in the wrong order. Order 2 7 3 1 5 3 1 22 7

field declaration [A-Z][A-Z0-9_]* 2 2 1 1 4 1 1 1 13 8

Not allowed general import statement (import gamegui.*) 1 1 2 2

field declaration [a-z][\w\d]* 1 2 2 1 2 8 5

protected field declaration does not have a JavaDoc 3 5 13 20 8 15 3 1 14 82 9

public static field declaration does not have a JavaDoc 1 1 2 2

field declaration having visibility are not allowed. 2 1 1 1 2 1 7 54 9 78 9

static field decalration is in the wrong order. Order 1 1 2 1 5 4

Not allowed general import statement (import java.awt.*) 1 1 2 2

public field declaration does not have a JavaDoc 1 1 1 1 7 52 8 71 7

public static final field declaration does not have a JavaDoc 47 1 2 50 3

protected static final field declaration does not have a JavaDoc 2 1 3 2

nested type in class must not be declared between fields and methods ,

you have to place them at the end of the class 1 1 1

method declaration modifiers should have the following

order[pub|pro|pri]->[abstract]->[static]->[final]->[synchronized]-

>[native]->[strictfp] 6 2 8 2 18 4

is implicit for interface, it may be used but Java language spec says it

is obsolete 1 1 1 1 1 1 1 7 7

public constructor declaration JavaDoc has more tags as parameters

existing 1 1 1 3 3

class modifiers should have the following order [public]->[abstract]-

>[final]->[strictfp] 1 2 3 2

public static method doesn't provide any JavaDoc 1 2 3 2

static public final field declaration does not have a JavaDoc 3 1 3 3 1 11 5

public final field declaration does not have a JavaDoc 2 1 2 5 3

protected method declaration JavaDoc does not provide the required

tag for all parameters 15 15 1

protected method declaration JavaDoc does not provide the required

tag 10 6 16 2

protected method doesn't provide any JavaDoc 14 14 1

protected method declaration JavaDoc has more tags as parameters

existing 1 1 1

abstract protected method declaration JavaDoc does not provide the

required tag for all parameters 1 1 1

abstract protected method declaration JavaDoc does not provide the

required tag 1 1 1

abstract protected method doesn't provide any JavaDoc 1 1 1

abstract public method declaration JavaDoc does not provide the

required tag for all parameters 1 5 6 2

abstract public method doesn't provide any JavaDoc 1 7 8 2

JavaDoc tag 1 2 1 4 3

protected abstract method declaration JavaDoc does not provide the

required tag for all parameters 2 2 1

protected abstract method declaration JavaDoc does not provide the

required tag 2 2 4 2

protected abstract method doesn't provide any JavaDoc 2 2 4 2

empty catch block, this is normally an error 1 1 1

public method declaration JavaDoc has more tags as parameters

existing 1 3 4 2

protected final field declaration does not have a JavaDoc 2 2 1

public abstract method declaration JavaDoc has more tags as

parameters existing 1 1 1

interface Declaration JavaDoc does not provide the required tag 2 2 2 6 3

Not allowed general import statement (import solitaire.*) 2 2 1

abstract public method declaration JavaDoc does not provide the

required tag 4 4 1

public static method declaration JavaDoc does not provide the

required tag 1 1 1

fields in class must not be declared before and after the method

definitions, you have to place them before the method definitions 1 1 1

protected static field declaration does not have a JavaDoc 1 1 1

Figure 8: JCSC results for project 6.

13

public class Sample {

int i;

String name;

public int foo(int max) {

int counter;

int j;

for (j = 0; j < max; j++)

counter += max * j + i;

return counter;

public String bar(String input) {

name = input;

return name;

}

}

Figure 9: Examples of pure and impure methods. foo is pure, while bar is impure.

function bar() in Figure 9. This method changes the value of name, which is not declared
locally to bar().

Purity uses the .class files to test code. It must know the path of the project and the
class containing the main method in order to run. It systematically goes through every class
and method and checks to see if that method is pure. It is helpful since it does not rely
on JML or JavaDoc documentation to detect impure methods, but it systematically checks
each one, and therefore each run of Purity will take some time.

In order to determine whether or not a method is pure, the method itself must be checked
as well as any methods that are invoked from it. Purity traces and checks all methods
called by the user and recursively any methods that those methods call. This includes any
Java1 library methods. Therefore, it can take a long time to run over a project due to the
amount of code checked. For example, Purity checks 57 methods for the simple program
in Figure 10 that imports java.lang.System and calls System.out.println("test\n"),
including fillInStackTrace() from Java.lang.VMThrowable, java.io.OutputStream’s
flush() method, and java.lang.Integer’s toString() method.

import java.lang.System;

public class MyClass {

public static void main(String[] args) {

System.out.println("test\n");

return;

}

}

Figure 10: Simple Java example.

Outside of this slowdown, Purity is very helpful. As the tool matures, currently version
0.09, we expect that it will be enhanced to produce less output about included files and use
less time to check imported methods. One approach for the authors to improve the tool is
to include a dictionary of Java library methods and classes and whether they are pure or
impure. A sample output from one student’s code can be seen in Figure 11.

Purity’s output lists every class, method, and element that it has checked, and whether
they are “PURE,” meaning that it did not change any other elements that were not declared
inside its scope, or impure, such as “NOT HEAP PURE” and a one-line description as to

1java.sun.com

14

KWLinkedList {

public void [ro] KWLinkedList()

PURE

public boolean add([ro] java.lang.Object lv1_0)

NOT HEAP PURE

"this": mutation on this.(size|head)

public java.lang.Object [ro] get(int lv1_0)

PURE

public int [ro] indexOf([ro] java.lang.Object lv1_0)

PURE

public java.util.Iterator [ro] iterator()

PURE

public java.lang.Object remove(int lv1_0)

NOT HEAP PURE

"this": mutation on this.(size|head)

}

Figure 11: Purity output for Java class KWLinkedList.

why. Figure 11 is an example of the Purity output from the KWLinkedList project from CS
241 described in Section 2.2. It shows that the method public Object remove(int lv)

removes an object and is not pure, since it changes the size field and possibly the head

field. Similarly, public Object get(int lv) returns an element at item lv and does not
modify any fields; therefore, Purity denotes it as “PURE”.

Purity can be very helpful. Consider the case of a method that should be pure but is
discovered not to be. This is undoubtedly a bug in the user’s program. For example, get()
should return an element without changing any elements or variables external to the method.
If it is identified as impure, there is a problem with this get() function.

Consider the case where a student’s code is modified to introduce an error, size++;, in
the get() function. Purity clearly identifies the function now as “NOT HEAP PURE”.

public java.lang.Object get(int lv1_0)

NOT HEAP PURE

"this": mutation on this.size

As seen from this example, the output is also comprehensive. Purity tells us that the public
get() function takes an integer parameter and returns an Object. Furthermore, it is not
pure because it modifies the size variable in the current class. Therefore, to fix our mistake,
we should look into the method get() for a change to this.size.

As another example, Purity also helps the user find extraneous print statements left due
to debugging or for other reasons. A call to System.out.println() changes the state of
the system; therefore, we would expect Purity to tell us that a method containing a print
statement would be impure. I changed the student’s code above, replacing size++ with
System.out.println() to print out the current element, as would be used for debugging
where get does not return the correct element. Purity returned the following result for get:

public java.lang.Object [ro] get(int lv1_0)

HEAP PURE BUT DOES IO

Purity told us that it is pure, that it does not change any of our fields, but it also correctly
informed us that the method does IO. This would be a handy check for extraneous debugging
information left in the code after it has been working correctly.

15

The test suite for Purity was different from that of PMD. The CS 301 projects were larger
and the GUI code was removed from the source directories, making compilation complicated.
Therefore, student code from the CS 241 Linked List project, described in Section 2.2, was
checked with Purity. Each student’s code was compiled under javac, and then checked with
Purity.

However, Purity was not run over every student’s code due to time limitations, but of
the students that it was run on, it returns exactly what we would expect for the purity of
methods. That is, we did not find any new problems in the student code from Purity. This
is due to the fact that with such a small project, the students were required to have their
projects working correctly, which means that purity issues must be fixed. We conjecture
that these type of issues are usually the first to be fixed, or produce the most obvious errors
upon runtime. However, introducing these problems, they are easily picked up by Purity, as
the example above shows.

Since Purity is so narrowly focused, it will not be helpful for finding a broad variety of
errors, such as those found by PMD, but it provides concrete answers to a method’s purity
much better than PMD and all other checkers discussed. I recommend that Purity be used,
in addition to the use of other, more broad checkers.

6 Conclusion

Each of the three tools examined in this paper have different strengths, all useful. PMD
was, however, the most powerful of the three examined. PMD identified out more real bugs
than the other two in the code tested. It gives some false positives, but has a wider base of
checks than the other two checkers combined.

JCSC was the least powerful of the three, since its main purpose is to check coding style.
It performs this task as well as PMD, with the benefits of an easy-to-use GUI that the other
two tools do not include. This tool is the most practical of the three tools at finding style
problems, but not as powerful as the others in finding true bugs in the code.

Purity has a niche separate from the other two tools examined. We hypothesize Purity
would be a good tool to have when writing the code, but once it is written and debugged,
it may not be that helpful. This is because impurity issues are mostly caught in debugging,
since they generally produce errors in the running of the program.

Therefore, for the tools discussed, I would recommend that they be used simultaneously.
Purity is a powerful checker for impure methods, and would complement PMD’s power to
test for serious errors in the code. JCSC would complement both by giving quality assurance
an easy setup for coding standards, without the need to learn PMD’s Java or XML structure.
Therefore, all three tools are useful.

The results of the study on CS 301 student projects showed that most students reduced
the amount of duplicate code over the projects. We concluded that requiring complete test
coverage of the solitaire package is effective at giving students an incentive to clean up
their code [10].

16

7 Appendix

7.1 PMD Custom Rulesets

Two custom rulesets were written to expand the power of PMD. They took two basic direc-
tions: type checking and simple rule handling.

7.1.1 Type Checking

The first attempt was to construct a ruleset to check type issues. The typechecking ruleset
was written to include explicit casts and implicit casts through function calls. The function
call rule code is run every time the AST encounters a function declaration, and the param-
eters are researched. The explicit cast rule code is run every time the AST encounters a
Cast expression. Both rules look back through the tree and obtain the original declaration
of the variable and function call rule checks the original definition of the function. They are
compared and PMD outputs a warning if one is needed.

This ruleset worked for all of the simple cases, but was too complex to run on larger test
cases. However, this set is mainly used to give the programmer a heads up because the javac
compiler will print messages to the user warning of loss of accuracy or unacceptable calling
of functions with improper types. Downcasting is a normal procedure for Java, especially
in older version when adding to a Collection class provided by Java. Therefore, the casting
functionality is useful in large software that an updater might want to see how variables are
being downcast, but not useful for the small programmer that must downcast to use Java’s
built in list and collection functionality.

7.1.2 Simple Rule Handling

A ruleset and supplementary material was written in Java to handle an external file as input
to PMD. The file allows a user to declare methods as pure or fields that should not change
in certain methods. A sample file can be seen in Figure 12. This example states that the
method main in class MyClass should be found pure. Similarly, method getInfo in clas
MyClass should not change the field a.

The ruleset reads in this sample file and checks at each class to see if there is a method
that is declared pure and if so, checks that no variables created outside the method are
changed within the method. Similarly, if a variable is declared unchanged in a method, the
method is checked to see if that variable is assigned something different. If the variable
has a function called on it, we cannot guarantee that the variable is unchanged, so we will
note that a function has been called on it. The example produces output similar to that in
Figure 13, which tells us that the method getInfo changed field a in line 14.

Simple rule files were written and this ruleset was run on sample student code from the
Software Development course. This method correctly identified impure methods.

17

pure MyClass:main

pure MyClass:getData

pure MyClass:getInfo

unchanged MyClass:getInfo:a

unchanged MyClass:getInfo:c

Figure 12: Sample simple rule file to test the purity of methods using my ruleset.

jrhott% pmd.sh test.java text simplerulefile

test.java:14 Warning: Variable a changed in method MyClass:getInfo.

Figure 13: Sample PMD output using the simple rule file to test the purity of methods using
my ruleset.

Bibliography

1. Alfred V. Aho, Ravi Sethi, and Jeffrey Ullman, Compilers, principles, techniques, and
tools. Addison-Wesley, 1986.

2. Peter Amey, Praxis High Integrity Systems, “Yours faithfully: an everyday story of
formality,” Invited keynote address, in “Practical Elements of Safety”, Proceedings
of the Twelfth Safety-critical Systems Symposium, Birmingham, UK, February 2004.
Copyright Spinger-Verlag 2004.

3. W Amme, N Dalton, J von Ronne, and M Franz, “SafeTSA: A Type Safe and Referen-
tially Secure Mobile-Code Representation Based on Static Single Assignment Form,”
PLDI 2001.

4. Fred Brooks, “No silver bullet: Essence and accidents of software engineering,” IEEE
Computer, 20(4):10-19, April 1987.

5. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe, “Extended
static checking,” Technical Report #159, Compaq Systems Research Center, Palo Alto,
CA, December 1998.

6. Findbugs. University of Maryland. findbugs.sourceforge.net, January 2007.

7. Martin Fowler, Refactoring: Improving the design of existing code. Addison-Wesley,
2000.

8. Ralph Jocham. JCSC, jcsc.sourceforge.net, 1999-2005.

9. JUnit, junit.org.

10. Robert E. Noonan and John R. Hott. “A course in software development.” Thirty-
eighth SIGCSE Technical Symposium on Computer Science Education, March 2007,
pp. 135-139.

11. PMD, pmd.sourceforge.net, 2002-2006.

12. SISSy. sissy.sourceforge.net, 2006.

18

