
KD-Tree Algorithm for k-Point Matching

Expected Case Assumption

∃δ such that ∀ε-sized areas, there are δεn point in that region

kd-tree algorithm for k-point matchingkd-tree algorithm for k-point matching
John R Hott, Nathan Brunelle, abhi shelat

Motivation Problem Statement Smallest Match De�nition
Perimeter

- Order-independent for up to 3 colors in d dimensions
 O(1) to compute
- Equivalent to Traveling Salesman in 2D as number of colors in-

creases
 (k-1)!/2 k-gons formed for each match
- Not well defined in higher dimensions

Convex Hull

Centroid

KD-Trees

Algorithm Results

- Order-independent for any number of colors
- Solves perimeter’s TSP equivalence problem in 2D
- Still not well definied in higher dimensions

- Scales well to any dimensionality and number of colors
- Defined by the average of all points in the match
- Matches are intuitive
- We consider sum of squared distances to the centroid, as de-

fined below:

KD-Tree Algorithm for k-Point Matching

Centroid Measure

For a d-dimensional space and k colors per match, the centroid of
a match m is defined as

c(m) =
1

k

k∑
i=1

pi .

Our size(m) function, using sum of squared distances to the
centroid, is defined as

size(m) =
k∑

i=1

d∑
j=1

(pi ,j − cj(m))2 .

KD-Tree Algorithm for k-Point Matching

Centroid Measure

For a d-dimensional space and k colors per match, the centroid of
a match m is defined as

c(m) =
1

k

k∑
i=1

pi .

Our size(m) function, using sum of squared distances to the
centroid, is defined as

size(m) =
k∑

i=1

d∑
j=1

(pi ,j − cj(m))2 .

KD-Tree Algorithm for k-Point Matching

Kd-tree Algorithm

Input: k sets of n points
Output: set of n ordered smallest matches of k points each

color1 = read input from file
for i ← 2 to k do

colori = read input from file
kdi = makeKDTree(colori)

pq = new PriorityQueue
matches = new ArrayList
foreach color1 do

addPutativeMatches(pq)

while pq not empty do
x = pq.poll()
if all points are clean then

foreach color i do
kdi .remove(x.i)

matches.add(x)
else

if color1 is clean then
if no more matches available then

addPutativeMatches(pq)

KD-Tree Algorithm for k-Point Matching

addPutativeMatches Subroutine

Input: PriorityQueue pq, current point pt1 from color 1, kd-trees for each colors 2 to k
Output: list of 10 smallest matches for point pt1

for i ← 2 to k do
pti = kdi .getnearest(pti−1)

small = size(pt1, pt2, ... , ptk)
search = get search distance from small
tq = new PriorityQueue
tq.add(match(pt1,pt2, ... ,ptk))
for i ← 2 to k do

listi = kdi .getnearest(pti−1, search)

foreach list2 as pt2 do
foreach list3 as pt3 do

... foreach listk as ptk do
dist = size(pt1,pt2, ... ,ptk)
if dist < small then

tq.add(match(pt1,pt2, ... ,ptk))

for i ← 1 to 10 do
m = tq.poll()
pq.add(m);

Create Matches

addPutativeMatches Subroutine

- Creates the kd-trees
- Calls the addPutativeMatches subroutine for each first color

point
- Possible matches are added to sorted PriorityQueue
- Matches are pulled in order
- If a match is invalid, and the first-color point no longer has

matches in the queue, re-call addPutativeMatches for it

- Finds the closest point of each color to a given point with kd-
tree lookups

- Creates a match of these points
- Searches a radius based on the size of this initial match for all

possible points
- Makes matches with points found
- Returns 10 smallest matches

Algorithm Analysis

References
1. Blanchard Randall IV. The u.s. drug approval process: A primer. Congressional Research Service, June 1, 2001.
2. Kakde, Hemant. Range Searching using Kd Tree. 2008.

Definition 1 A 2-dimensional rectangular range query on P asks for the points from P

lying inside the query rectangle [x:x’]*[y,y’]. A point p :=(px,py) lies inside this rectangle

if and only if,

pxε[x,x’] and pyε[y,y’]

Let’s consider the following recursive definition of the binary search tree : the set of (1-

dimensional) points is split into two subsets of roughly equal size, one subset contains the

point smaller than or equal to splitting value, the other contains the points larger than

splitting value. The splitting value is stored at the root and the two subsets are stored

recursively in two subtrees.

Figure 4:

Each point has its x-coordinate and y-coordinate. Therefore we first split on x-coordinate

and then on y-coordinate, then again on x-coordinate, and so on. At the root we split the

set P with vertical line l into two subsets of roughly equal size. This is done by finding the

median x- coordinate of the points and drawing the vertical line through it. The splitting

line is stored at the root. Pleft, the subset of points to left is stored in the left subtree,

6

Division of points in the plane (left) and corresponding KD-tree (right) for a sample of points. [2]

- Given a set of points, K, partitioned into k sets of colors,
 K1, K2, ..., Kk, with |K1| = .. = |Kk| = n
- Define a match m = {pi | pi in Ki} where |m| = k
 Each m has one point from each color

- Find the smallest n matches such that each point is only used
once

Worst Case

- Occurs when first k-1 colors are coincident with each other and
color k points asymptotically converge to a point within the
search area of any match

KD-Tree Algorithm for k-Point Matching

dD/kC: Worst Case Time Complexity

Tapmk,d
= O((k − 1)(dn1−

1
d) + log n + (k − 1)(n − 1 + n log n)

+nk−1 log n + 10(2 log n))

= O(nk−1 log n + kn log n + kdn)

Tpart1k,d = O
(
nTapmk,d

)

= O
(
nk log n + kn2 log n + kdn2

)

Tpart2k,d = O

(
nk log n + (k − 1)n log n +

nk − n

10
Tapmk,d

)

= O
(
n2k−1 log n + knk+1 log n + kdnk+1

)

- Worst case complexity: O(n2k-1 log n)

Expected Case
- On average, we assume that:

- Expected case complexity: O(kdn2)

 In other words, the points are evenly distributed and the number
of points in any region is proportional to the size of the region.

- Therefore, we consider the number of points in any small region
to be constant

KD-Tree Algorithm for k-Point Matching

dD/kC: Expected Case

Tapmk,d
= O(2(k − 1)dn1−

1
d + log n) = O(kdn)

Tpart1k,d = O
(
nTapmk,d

)
= O(kdn2)

Tpart2k,d = O (n log n + nk log n) = O((k + 1)n log n)

with the total time complexity reducing to

Tkdtree = Tbuildkds + Tpart1k,d + Tpart2k,d

= O
(
(k − 1)(n log n) + kdn2 + (k + 1)n log n

)

= O(kdn2).

- kd-tree algorithm outperforms brute force in expected case
 Brute Force: O(n3 log n) with O(n3) space complexity
 O(n4) with O(n) space complexity

 Our Algorthm: O(n2) with O(n) space complexity

3 colors in 2 dimensions

- kd-tree algorithm outperforms brute force in expected case
 Brute Force: O(dnk log n) with O(nk) space complexity
 O(dnk+1) with O(n) space complexity

 Our Algorthm: O(kdn2) with O(n) space complexity

Arbitrary colors and dimensionality

- Partition d-dimensional space to create binary tree
 Level in the tree determines dimension partitioned
 Each non-leaf node in the tree defines a splitting hyperplane
- Designed for fast nearest-neighbor searching
 Worst case O(n1-1/d) for d dimensions
 Average case O(log n) for 2 dimensions
- Require one-time build cost of O(n log n)

Drug Trials
- Every drug seeking FDA approval must go through Phase II and

III clinical trial periods (on human participants) to determine
safety and effectiveness [1].

- Drugs compared against other drugs and placebos to determine
effectiveness

- Must compare participants with similar features to eliminate
bias due to:

 - Age - Height
 - Gender - Weight
 - Ethnicity
- Consider the following example, with Tylenol and Advil com-

pared with a placebo. Each participant is plotted in terms of
weight and age:

- Brute force solution:
 Try all possible combinations of people taking different
 drugs and pick the smallest ones
 Two possibilities:
 - Fast method: make all matches, sort, pick smallest
 O(n3 log n) with O(n3) space complexity
 For 300 participants, there are 1,000,000 matches
 - Space efficient method: make smallest match, throw
 out those points, repeat
 O(n4) with O(n) space complexity

- We want a faster solution that uses as little space as possible

