
Adding Functionality to PMD Java Checker

Robbie Hott

May 10, 2006

1 Introduction

Software Engineering has shown us that it is much cheaper to find errors in code as early as
possible, and that found early, they are much easier to fix [3]. This has led to the outcrop
of many compile-time checks for finding bugs early: tools, environments, and methods.
Software Engineers use formal methods such as Cleanroom development, in which they
develop code without compiling it to stamp out bugs, Rapid Prototyping, in which they
build a quick model knowing they will throw it away, and Theorem Proving, proving certain
properties of the system before coding. A leader in this area is Praxis [1]. The tools Software
Engineers use include ESC/J, Java PathFinder, PVS for proof verification, Alloy for model
checking, and others. However, most of these tools require a learning curve, or at least an
experienced programmer to use, but a similar tool, PMD, would allow for use earlier as a
programmer [5].

2 Background

PMD allows the programmer to write rules that the code must follow in order for the code
to be considered correct by PMD. These rules can be written in one of two formats, XML
or Java classes. It can allow this because it uses a JavaCC parser to parse the file into
an Abstract Syntax Tree, as can be seen in Figure 2. Therefore, that tree can be browsed
by either XML or Java. PMD already includes many rules, including some to ensure curly
braces follow a while statement, that there are no unnecessary if statements, and some that
ensure that the code is formatted correctly, just to name a few. It also can be integrated into
editing environments, such as Eclipse, and has a GUI for easy use with any level of coder.

This provides a powerful framework in which the checking of code can be enhanced. PMD
and these other tools have come a long way, but further work on them can help coders find
bugs earlier and avoid the costly time of bug-hunting later on.

3 Related Work

Other programs are available that are doing similar work. This includes ESC/Java [4].
ESC/Java and many other programs that check code at compile time require that properties
and rules about the code are inserted into the code in a language form known as JML, Java
Markup Language. Right now, ESC/Java is in version 2, but there is not a large amount of
information available about it.

1



class MyClass {

Vector v;

Integer a;

int main() {

for (int i = 1; i < 25; i++) {

int b = 5;

int c = 56;

b = b + 34 + c;

}

}

}

Figure 1: Small example of Java Code to create an AST from using PMD.

Amme, Dalton, Ronne, and Franz’s SafeTSA is a Java VM and compiler replacement
that uses a different form of byte code, which is smaller than Java Byte Code, however it
is mainly used in academia [2]. Their method for ensuring type-correctness is to use Static
Single Assignment, which helps to reduce the code verification effort at the consumer side.
As of late, their website safetsa.org has disappeared. This would have made it more
difficult to find SafeTSA, which would need to be updated to accept Java 1.5.

4 Improvements and Results

Many improvements were made in PMD by writing rulesets that add functionality to PMD.
These took two basic directions: type checking and simple rule handling.

4.1 Type Checking

The first ruleset attempted was a ruleset to check type issues. The typechecking ruleset was
written to include explicit casts and implicit casts through function calls. The function call
rule code is run every time the AST encounters a function declaration, and the parameters
are researched. The explicit cast rule code is run every time the AST encounters a Cast
expression. Both rules look back through the tree and attain the original declaration of
the variable and function call rule checks the original definition of the function. They are
compared and PMD outputs a warning if one is needed.

This ruleset worked for all of the simple cases, but was too complex to run on the larger
test cases. However, this set is mainly used to give the programmer a heads up because the
Java javac compiler will warn the user of loss of accuracy or unacceptable calling of functions
with improper types. Downcasting is a normal procedure for Java, especially in older version
when adding to a Collection class provided by Java. Therefore, the casting functionality is
useful in large software that an updater might want to see how variables are being downcast,
but not useful for the small programmer that must downcast to use Java’s built in list and
collection functionality.



CompilationUnit

TypeDeclaration

ClassOrInterfaceDeclaration(MyClass)(class)

ClassOrInterfaceBody

ClassOrInterfaceBodyDeclaration

FieldDeclaration:(package private)

Type

ReferenceType

ClassOrInterfaceType:Vector

VariableDeclarator

VariableDeclaratorId:v

ClassOrInterfaceBodyDeclaration

FieldDeclaration:(package private)

Type

ReferenceType

ClassOrInterfaceType:Integer

VariableDeclarator

VariableDeclaratorId:a

ClassOrInterfaceBodyDeclaration

MethodDeclaration:(package private)

ResultType

Type

PrimitiveType:int

MethodDeclarator:main

FormalParameters

Block

BlockStatement

Statement

ForStatement

ForInit

LocalVariableDeclaration

Type

PrimitiveType:int

VariableDeclarator

VariableDeclaratorId:i

VariableInitializer

Expression

PrimaryExpression

PrimaryPrefix

Literal:1

Expression

RelationalExpression:<

PrimaryExpression

PrimaryPrefix

Name:i

PrimaryExpression

PrimaryPrefix

Literal:25

ForUpdate

StatementExpressionList

StatementExpression

PostfixExpression:++

PrimaryExpression

PrimaryPrefix

Name:i

Statement

Block

BlockStatement

LocalVariableDeclaration

Type

PrimitiveType:int

VariableDeclarator

VariableDeclaratorId:b

VariableInitializer

Expression

PrimaryExpression

PrimaryPrefix

Literal:5

BlockStatement

LocalVariableDeclaration

Type

PrimitiveType:int

VariableDeclarator

VariableDeclaratorId:c

VariableInitializer

Expression

PrimaryExpression

PrimaryPrefix

Literal:56

BlockStatement

Statement

StatementExpression

PrimaryExpression

PrimaryPrefix

Name:b

AssignmentOperator:=(simple)

Expression

AdditiveExpression:+

PrimaryExpression

PrimaryPrefix

Name:b

PrimaryExpression

PrimaryPrefix

Literal:34

PrimaryExpression

PrimaryPrefix

Name:c

Figure 2: AST generated from the Java code in Figure 1.



4.2 Simple Rule Handling

A ruleset and supplementary material to handle that ruleset was written in Java to handle an
external file as input to PMD. The file allows a user to declare methods as pure or variables
that should not change in certain methods. A sample file can be seen in Figure 3. The ruleset
reads in this sample file and checks at each class to see if there is a method that is declared
pure and if so, checks that no variables created outside the method are changed within the
method. Similarly, if a variable is declared unchanged in a method, the method is checked
to see if that variable is assigned something different. If the variable has a function called
on it, we cannot guarantee that the variable is unchanged, so we will note that a function
has been called on it.

Simple rule files were written and this ruleset was run on sample student code from an
undergraduate Computer Science course. This method correctly identified impure methods
and methods that changed the variables given it.

pure MyClass:main

pure MyClass:getData

pure MyClass:getInfo

unchanged MyClass:getInfo:a

unchanged MyClass:getInfo:c

Figure 3: Sample simple rule file used to test the code in Figure 4.

5 Future Direction

The next big step for PMD is to include other files along with the files it is testing for a
complete system test. That can be done by including the imported files of each source file
into the files to check. I have started to implement this into PMD, however, as systems
grow, the java files might not exist on a given system, such as when the Java packages are
imported. That leads to the need to parse class files, which becomes even more complicated.
Once this has been implemented in PMD, it will fix many cross-class bugs and issues in
PMD and allow the tool to be much more comprehensive and powerful.

6 Conclusion

It turns out that the Simple Rule handling to check for pure and unchangeable variables
is very useful. It allows code to be checked by coders or testers without the declarations
for the testing required to be in the Java source file. Coders can write the code and the
separate file with pure and unchanged declarations and keep the Java source code clean of
these checks. Similarly, testers can use the file to ensure the code is correct without the coder
seeing the tests run or having the coder write the tests ahead of time. This is very helpful
in the classroom setting, allowing a professor to write tests for a structure given to students,
and can check whether functions such as getData() accidently change Vector data in the
process when a student comes in for help. It also allows the students to easily perform these
checks as well. It is also helpful in the development setting as well, for the same reasons.



PMD is a rich new tool that is growing. With functionalities like these being added to
it, it proves to be an even more powerful tool in the future. These are just a few steps in
that direction for PMD, but there are many more. It will be a tool to watch in the future.

Bibliography

1. Peter Amey, Praxis High Integrity Systems, “Yours faithfully: an everyday story of
formality,” Invited keynote address, in “Practical Elements of Safety”, Proceedings
of the Twelfth Safety-critical Systems Symposium, Birmingham, UK, February 2004.
Copyright Spinger-Verlag 2004.

2. W Amme, N Dalton, J von Ronne, and M Franz, “SafeTSA: A Type Safe and Referen-
tially Secure Mobile-Code Representation Based on Static Single Assignment Form,”
PLDI 2001.

3. Fred Brooks, “No silver bullet: Essence and accidents of software engineering,” IEEE
Computer, 20(4):10-19, April 1987.

4. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe, “Extended
static checking,” Technical Report #159, Compaq Systems Research Center, Palo Alto,
CA, December 1998.

5. PMD, pmd.sourceforge.net, 2002-2006.



Appendix

import java.util.Vector;

class MyClass {

Vector v;

Integer a;

Integer c;

class Test {

Integer d;

}

class Test2 extends Test {

Integer f;

}

void testme(Test2 one, Test two) {

System.err.println(one.toString() + two.toString());

}

String getInfo() {

a = new Integer(5);

return a.toString();

}

String getData() {

return a.toString();

}

int main() {

for (int i = 1; i < 25; i++) {

int b = 5;

float c = 56;

b = b + 34 + (int) c;

Test2 alpha = new Test2();

Test2 beta = new Test2();

testme(alpha, beta);

}

return 1;

} }

Figure 4: Another sample test file, used to initially test typechecking and simplerulefile rule
sets.



jrhott% pmd.sh test.java text basic,imports,unusedcode,controversial

test.java:3 Each class should declare at least one constructor

test.java:4 Use explicit scoping instead of the default package private level

test.java:5 Use explicit scoping instead of the default package private level

test.java:6 Use explicit scoping instead of the default package private level

test.java:7 Each class should declare at least one constructor

test.java:8 Use explicit scoping instead of the default package private level

test.java:10 Each class should declare at least one constructor

test.java:11 Use explicit scoping instead of the default package private level

jrhott% pmd.sh test.java text typechecking

test.java:27 Warning: Casting c (float) as int

test.java:30 Warning: Casting beta (Test2) as Test in function testme

jrhott% pmd.sh test.java text simplerulefile

test.java:16 Warning: Method getInfo in MyClass declared pure but is not

test.java:17 Warning: Variable a changed in method MyClass:getInfo.

Figure 5: Sample output running PMD with multiple rulesets on the code in Figure 4 and
using the rule file from Figure 3.


