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Abstract

Power consumption among sensors has always and will continue to be an issue among de-
velopers and deployers of such devices. Wireless sensor networks are even more power draining
because they utilize a wireless radio communications device which requires more power than
any other items on the sensor. This paper discusses some of the previous schemes to reduce
power consumption through planning or setting up topologies of the wireless sensors. The main
question that this paper seeks to answer is how to set up randomly distributed nodes into a
network that is useable for current routing techniques such as the approximate shortest path
utilizing a method to account for energy consumption at each hop. The paper presents algo-
rithms for setting up this system, one that works and one that appears better but has unwanted
side effects. Adapting a random network to a more structured scheme is difficult, but can be
done. This paper gives some samples of the algorithm using a simulation of 10 nodes, looks at
the complexity of the algorithm, and concludes that even though this algorithm is not optimal
or efficient, it is a good step towards utilizing these methods over randomized networks.

1 Preintro

2 Introduction

With the availability and usability of wireless sensor networks increasing, as well as many wireless
devices being used that do not have unlimited power supplies, we must look at energy costs of
these sensors and nodes. Most of the communication costs come from the cost of communication
between nodes. As an example, from the AT90S8535 wireless sensor [4], the processor takes 5mA
while active versus the radio, which takes 12mA to send and 4.5mA to receive. Even when inactive,
the radio takes 5µA in each mode while the processor only takes 1µA. Therefore, we can see that
attention needs to be paid to the amount and strength that our sensors must send through the
radio.

Also, some networks of sensors may be deployed in areas where administrators do not want to
go or are unable to go, and therefore cannot place the sensors in a predefined grid to which their
algorithm can automatically run. These environments include battlefield applications (mentioned
in [1]), nature applications (habitat monitoring [5]), among others.

This paper will go into the background of some topologies, look into related works, and then
focus on the algorithm proposed and conclude.
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3 Background

3.1 Powering the Radio

Let us first look at the costs of powering the radio and see exactly what issues we must look at.
Consider a very simple radio model, as described in [2], where the base energy is Eelec = 50nJ/bit
to transmit or receive one bit and the energy to amplify for a receiver to hear εamp = 100pJ/bit/m2.
With this model, to send a k-bit message a distance of d meters, it would take

ETx(k, d) = ETx−elec(k) + ETx−amp(k, d)

= Eeleck + εamp · 10−3kd2

= 50k + 100 · 10−3kd2

nanoJoules of energy. Similarly, to receive the same k-bit message, it would take

ERx(k) = ERx−elec(k)

= Eeleck

= 50k

nonoJoules of energy. Therefore, each k-bit message would consume at least

E = h(100k + 0.1kd2)nJ,

if all the nodes are equidistant. However, if our message is picked up by all the neighbors of each
node along the path, we are really consuming a total of

E = h(50k + 0.1kd2 + 50nik)nJ,

where ni is the number of neighbors of node i with a distance of less than d from i. This leaves us
with a few options to reduce the energy consumed.

Firstly, we could reduce the size of the message, k, but that is only feasible to a certain extent
because it would require the sensors to have the processing power to compress data. Even if we did
allow compressing of some data, the power used to compress the data would have to be balanced
out with the power to send or their combined energy uses would outweigh the cost of sending the
uncompressed data.

Another option is to reduce the number of neighbors along the way. Salhieh, in [7], addresses this
by sending all communications toward the edges of the network first, then towards the destination.
They show improvement on energy costs, but it requires longer travels through the network to
reach the destination and it wears out the nodes along the edges of the network.

The option addressed in this paper is to reduce the distance d each node must send the data,
and therefore reduce the cost to amplify each bit. This can be very significant if we are sending to
nodes quite far away. We will look at how to reduce this distance by considering different topologies
and choosing one that is more promising.

3.2 Topologies

Wireless Sensor Networks have typically been arranged into a few different topologies. Each of
them has advantages and disadvantages, which we will discuss in detail.
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The most naive and simple way to set up a network is to have every node communicate directly
to the base station, as seen in Figure 1. This setup provides the worst power efficiency, but it
allows the base station to stay up to date consistently. Having each node communicate directly to
the base station requires a lot of power to amplify the radio signal to reach the base station with
enough intensity for the base to read in the message. It also introduces a need to control or avoid
congestion between the nodes in case they all decide to communicate at once. It provides much
better updating of the base station and much less communication time for queries and responses
from the base station. Early wireless networks were this type of topology [6].

Figure 1: Naive simple approach: let all nodes connect directly to the base station.

We can extend the simple approach into an Hierarchical approach, seen in Figure 2. This
approach is similar to the simple approach, except in this approach the nodes will talk to the
node that is closer to the base station than itself. This approach leads to a tree-like structure
with the base station as the root node. It provides many advantages and disadvantages over the
simple approach. In this scheme, the communication costs for leaf nodes are drastically reduced
because they do not have to amplify their signal to reach the base station, but just a neighbor. It
also reduces the cost and probability of congestion in the network. For disadvantages, this system
requires nodes to be able to forward data and puts more burden on nodes in the path, especially
close to the base station, leaving those nodes to quickly burn out. Also, it increases communication
– query and data – costs because we now have to wait for queries or data packets to be propagated
through the network before reaching the base station.

A different spin on the Hierarchical approach leads us to the Clustering approach, seen in
Figure 3. This scheme is similar to the Hierarchical scheme, but here we divide up the nodes into
clusters based on distances between nodes. Once we have found a good cluster, one node will be the
cluster head, responsible for gathering the data of the cluster and forwarding it to the base station.
This system is advantageous because nodes only have to talk to a very close neighbor and there is
generally only one hop between a node and the base station. The disadvantage, along with slightly
increased communication cost due to propagation, is that the cluster heads will have a significant
power drain with their forwarding communications duties. The biggest advantage of this approach
is that it allows us, if we know the cluster head, to replace that node with a node that contains
extended battery life or that would be equipped with memory to store some data and forward it
later to the base station, either when the base station queries for it or at a pre-determined interval,
saving some communications and energy costs of the cluster head node.
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Figure 2: Hierarchical approach: each node will connect to another node closer to the base station
(tree-like with base as root.

Figure 3: Clustering approach: group close nodes with one connecting to the base station.
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LEACH, in [2], seeks to describe a way to get the benefits of a clustered approach while reducing
the disadvantages. In their approach, they divide the nodes by distance and one node per cluster is
elected as cluster head. Then, among cluster deliberation, an order is determined where each node
will spend time as the cluster head, see Figure 4. This reduces the power drain per node so that no
one node must bear the cost of forwarding data to a host of nodes. However, it still has the same
overall drain of energy. But, it carries all the advantages of the clustering approach, except that
nodes with extra batteries or store and send memory cannot be used as the cluster heads since the
head is changed over time.

Figure 4: LEACH approach: use clustering approach but rotate cluster-head status.

Manges, in [6], discusses using traditional wired schemes on wireless sensor networks and while
he covers the simple approach and a form of the hierarchical approach presented above, he also
goes into a peer-to-peer system typical of web networks. He claims that this type of topology will
become more prevalent, however this type of system that requires the sensors to be active more
often with the state of the network constantly changing is highly energy draining.

4 Related Work

The closest work to this paper comes from Salhieh, et al, in [7]. They propose using traditional
routing algorithms through a network of nodes by deploying them in predetermined patterns.
Once the nodes are deployed in a set pattern, they use a distributed version of the shortest path
algorithm to send messages. Each node is defined by a tuple defined by the distance to the edge
in all directions. For example, a four-neigbor graph would have an example tuple of (1, 3, 5, 2) in
which 1 is the distance to the west end, 3 hops to the top edge, 5 hops to the right edge, and 2
hops to the edge below. Destination tuples are subtracted from the sender’s tuple to determine
direction, then each of the neighbors’ tuples are subtracted from the destination to determine the
right direction to send the data in the graph. This is repeated at every node until the data arrives
at its destination. They also take into account the energy level and choose a node with higher
energy.

They claim that the most energy efficient method is to send data to the edges and then propagate
it along the edge to the destination. This scheme saves energy because each node that sends data
to its neighbor is heard by all the other neighbors, which must choose whether to listen to the
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message or discard it and return to sleep. Energy is lost in all neighbors for each send that occurs,
so sending the data to a place with fewer neighbors saves more overall energy.

One discussion that they avoid since their scheme assumes that the nodes are laid out by hand
beforehand is the usability of this scheme in randomized networks.

5 Problem Definition

This paper addresses one idea for an algorithm based on the work in [7] as described above, but
instead of using fixed sensor positioning, we will attempt to consider random distributions of nodes
transformed into a grid-like structure to see if we can increase the time energy efficiency of nodes.
This approach would allow us to use multiple paths to send data to the base station, unlike most
current tree-like models. All of the topologies we discussed in the Background section used a
tree-like structure, which required the data from each node to traverse the same path to the base
station.

Along with this idea, we will consider using a Shortest Path Scheme similar to that in [7], but
adding a dynamic cost-per-edge assignment as we send data along paths through the sensors.

6 Proposed Solution

The algorithm proposed will out of necessity be a distributed one. The most cost inefficient part
of this algorithm will be the initial setup of the system into a grid-like structure. Each node must
send out a small radio signal, and increase until it gets at least 4 responses from neighbors. Upon
receipt, it will chose the 4 closest neighbors and make specific connections with them. If multiple
neighbors are equidistant, we will choose the most spread out nodes, as seen in Figure 5. If a
neighbor choice already has stopped accepting neighbors, the node will choose the next candidate
in its candidate pool or send out another broadcast message to acquire more candidates for its pool.

Figure 5: Our node must choose either the 4 closest neighbors or the 4 most spread out.

Once the makeshift graph is formed, the base station must send out a message to all the nodes
as to its location in the grid. It will broadcast to its neighbors that it is 0 hops to the base station,
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whom will formulate that they are 1 hop away, and this will propagate to all the nodes.
At this point, each node knows that it wants to send its data to a node with a lower or at least

equal distance to the base station than itself. Each node will also keep track of energy cost to each
neighbor. If a node sends a message to a neighboring node, it will increase the cost of that edge by
2. Likewise, all the nodes that are in hearing distance, the costs of those edges will increase by 1.

Therefore, for each node to send a message, it must choose a neighbor with the lowest energy
cost and the lowest distance to the base station or make a compromise between the two.

6.1 Algorithm

To make this description clearer, the algorithm, in pseudocode, can be found in Figures 9, 11.

6.2 Simulation

A simulation was written in C++ to randomly generate nodes in a 10x10 space. Then the algorithm
was carried out on these nodes. This algorithm is incomplete, however, because after running
a simulation and human testing it, it does not provide an optimal grid of the nodes and has
the possibility to leave out nodes that choose neighbors later. The optimal path is not chosen,
and moreover, the paths are different depending on the interleaving of the distributed algorithm.
Differing paths is not the main problem, though, because even though the optimal path is not
chosen, in some cases the resulting graph would either be a disconnected graph or have one edge
between otherwise disconnected graphs, resulting in either lost traffic or a bottleneck and energy
drain. The problem with this algorithm is starvation. The first nodes that pick their edges and
get replies from other nodes effectively keep the nodes they communicate with from choosing their
optimal edges and they keep other nodes from forming edges where they are needed. They do this
by all choosing a “hot spot” node that is needed by later nodes, but that node is filled up before
the later nodes have a turn to ask for connections, resulting in nodes starved for connections.

A sample graph created under this algorithm can be seen in Figure 6.

Figure 6: Sample 10-node graph from the simulation of the first algorithm.

6.3 Revised Algorithm

Since we cannot provide an optimal gridding of the nodes, we will consider an algorithm that
provides a graph. This algorithm is an approximation algorithm based on the prior one, but does
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not try to create any ordered grid.
The base station will initiate the neighbor linking by connecting to its four closest neighbors.

They will then remember that they have been tapped by the base station and will then connect to
the three closest neighbors from them (except from which they were initially tapped).

Each node, in turn, when it receives the “get your neighbors” message will connect with the
three closest neighbors to it and make them part of its neighborhood. Any node may have more
than 4 edges into it if another node connects back to it in later execution. Basically a node will
always accept an incoming neighbor request, but will only make three neighbor requests of its own.

If a node does not get the “get your neighbors” message after a predetermined timeout, it will
connect directly to its four closest neighbors.

The rest of the algorithm will continue as the previous one did, with the base station sending
out a message and the nodes becoming aware of the number of hops from each neighbor to the base
station. Messages will be sent out the same way as well. This version of the setup algorithm can
be found in Figure 10.

6.4 Revised Simulation

Using the simulation method from above, the new algorithm was simulated by generation and by
hand, and in the randomized cases considered, worked to connect the graph and to give each node
at least four neighbors. Running this simulation will give us a graph similar to that in Figure 7.

Figure 7: Sample 10-node graph from the simulation of the second algorithm.

6.5 Data Propagation

Now that we have a graph with a sufficient number of edges to perform routing techniques, let us
run through an example. First, consider Figure 8 which displays the hop counts per edge that are
set at the end of the setup algorithm.

After this setup, we can trace the data path coming from the node at the top right of the
graphs as follows. It will always pick the path with the lowest number of hops to the base station,
however, when it has already traversed a path too many times and wants to save energy, it will
choose a slightly longer, yet less travelled path. This diffuses the energy spent among more nodes,
keeping certain nodes from burn out. Figure 12 shows this in motion. Communicating in this way
always works and always gets data to the base station, but it does not necessarily take the shortest
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Figure 8: Sample 10-node graph with hop counts included for each edge.

path, which is acceptable since we only wish to reduce power and are okay with taking a slightly
longer path to do so. We also effectively shift the workload around, moreso than LEACH since we
can take multiple paths around the nodes, and no node must support extensive forwarding because
there are multiple paths to the base station.

7 Discussion

7.1 Complexity

This algorithm is interesting in its complexity. We will look at the complexity per node by looking
at the general complexity of each algorithm of the setup and communication.

The setup algorithm appears to be on surface level a O(n2) algorithm because of nested for and
while loops, however, it is dependent on the initial choices of MIN_DISTANCE and MIN_INCREASE.
In the best case, it is O(n log n) because MIN_DISTANCE will be large enough to get at least 3
new neighbors, have to sort once, and we will traverse over that list twice: once to add them
to the perspectives list, a second to move them to the neighbors list. In the worst case, we will
get something ridiculous, by setting MIN_DISTANCE too small and MIN_INCREASE small as well, we
may be checking the same node hundreds of times before adding a second or third. This is worse
than polynomial time, however, we are guaranteed to eventually get other nodes for neighbors if
MIN_INCREASE > 1. On average, we will never actually hit the worst case because it deals with
human choice of initial signal strength. We will also hopefully pick up on average at least one node
per signal strength increase (assuming good human choice), and will communicate with nodes,
adding them to our perspectives for an average of O(n2 log n) complexity; traversing our lists of
increasing length up to n times and sorting n times. Remember, though, that n = 4 on average.

The sending algorithm is just over linear because we have to pick a decent sorting algorithm,
and we sort once and then run through our list once, giving us a general complexity of O(n log n).

7.2 Differences from a Similar Approach

This algorithm uses the same principles as that in [7], however it is remarkably different as well.
Since the nodes are not hand placed, we must adapt them into a structure that can use routing
schemes to get the message through the network of nodes, which turned out to be a harder problem
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than initially considered. However, using an approximation of a grid-like structure, we were able
to develop a graph in a decent time.

Also, this algorithm cannot benefit from the scheme of tuples to solve an approximation of
the shortest path problem distributively through the nodes. Therefore, we must rely that all
communication will be directed towards the base station, and rely on picking the minimum hop
distance to the base station at each point along the path to the base station. This could result in
cyclic movement of data in the most problematic case, but even that case will eventually be solved
because the weight of the path will grow until the data leaves that cycle.

8 Conclusion

In conclusion, this algorithm is not optimal, but it gets the job done. It requires a significant
amount of communication cost up front, and if the sensors are deployed and then never changed or
moved, that cost will only be accrued once. However, if shifting or dying nodes become a problem
and reinitialization is required, this cost could become too much. Other algorithms avoid this cost
because they utilize either specific sensor placement [7] or tree like structures where only minimal
setup is needed to find the closest neighbor [9], but LEACH seems to use a comperable amount of
communication to set up its clusters in its initialization phase [2, 3].

After initial setup, the algorithm significantly reduces the amount of amplification that must be
done to transmit the signal to the base station. Each node only has to talk to its closest neighbors
and it does not wear out any neighbor by using the same path repetitively. It also seeks to take
a minimal path to reach the base station, while keeping energy in consideration to not choose the
minimum path every time. It balances minimizing power consumption through sending to a closest
more direct node and utilizing the shortest path but not too frequently to cause burn out.

This approach also leaves many considerations out that could be included for tremendous affect
on power. Including nodes that have extra battery life and routing through those nodes more often
could increase the overall system power. Also, having the outside edge of the network powered
would increase system energy efficiency as well. There is also discussions about placing sensors
with data storage capabilities into a tree structured system [8]. Those nodes could be invaluable
here at certain hot spots in the graph and could be highly used in the nodes surrounding the base
station to reduce significant traffic flow until the base queries the nodes for the data. It would
make a more interesting design because the queries would have to go to nodes that could answer
and would have to be above the general routing scheme. The possibilities of combining this idea
with other existing ones is amazing and will be interesting to consider how data flow is considered
in future papers.
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Appendix

void setup() {

distance = MIN_DISTANCE

while (neighbors.count() < 4) {

while (perspectives.count() < 4) {

send(bcast_msg, distance)

for (each received message rec_msg_i) {

perspectives.add(rec_msg_i.sender, rec_msg_i.strength)

}

distance += MIN_INCREASE

}

sort(perspectives, strength)

for (i = 1; i <= perspectives.count(); i++) {

send_neighbor("be my neighbor", perspectives[i])

receive(ack, perspectives[i])

if (ack == 1) {

neighbors.add(perspectives[i])

if (neighbors.count() == 4)

break

}

}

}

}

Figure 9: Initial version of the pseudocode for the set up of each node in the graph.
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void setup() {

distance = MIN_DISTANCE

while (true) {

if (receive("get your neighbors", neighbor1) || timeout.isExpired())

break;

}

neighbors.add(neighbor1)

while (neighbors.count() < 4) {

while (perspectives.count() < 3) {

send(bcast_msg, distance)

for (each received message rec_msg_i) {

perspectives.add(rec_msg_i.sender, rec_msg_i.strength)

}

distance += MIN_INCREASE

}

sort(perspectives, strength)

for (i = 1; i <= perspectives.count(); i++) {

if (!neighbors.contains(perspectives[i])) {

neighbors.add(perspectives[i])

if (neighbors.count() == 4)

break

}

}

}

}

Figure 10: Revised version of the pseudocode for the set up of each node in the graph.
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void send_data(data) {

sort(neighbors, hops to destination)

min_weight = neighbors.get_min_weight()

neigbors.increase_all_weights_by(1)

foreach (sorted_neighbor in neighbors) {

if (sorted_neighbor.edge_weight < THRESHOLD * min_weight) {

send(data, sorted_neighbor)

sorted_neighber.increase_weight_by(1)

return

}

}

send(data, neighbors[LAST])

neighbors[LAST].increase_weight_by(1)

return

}

Figure 11: Pseudocode for the sending of data.
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(a) (b)

(c) (d)

Figure 12: This is a sample step through of the sending portion of the algorithm. We trace data
sent from the top right node to the base station. Red lines indicate the current travel path and blue
lines indicate already travelled paths, with lighter shades for more travelled paths. We will also
assume the threshold is low so we hit it immediately. Illustration (a) shows our first communication,
which takes the shortest path. After the threshold is met, as in (b), we will take another path with
the smallest hop count. It does not matter which we choose, so the node will pick a random one.
(c) and (d) show more subsequent paths, but note in (c) that the shortest path is chosen from the
node closest to the base station because all of its paths have been travelled upon and it then selects
the shortest route.
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