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Motivation

e Epidemiology: Clinical Trials
e Phase Il and Il pre-market trials
o After-market Phase IV trials against 3+ treatments

e Trials requiring similar groups to avoid confounding
e Participants with similar comorbidities (diseases, ...)
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Why doesn’t this nearest neighbor approach work for more groups?

e by and g closest points to r

e Triangle rgb, has smaller perimeter than rgb;
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Current Approaches

For two treatment groups
e Propensity scores used to reduce dimensionality
e Brute force or nearest neighbor searches

For more than two groups

e Brute force
e Requires O(n* log n) time using O(n*) space

Algorithm Analysis
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The End: Spoilers

EEN Brute Force
E kd-tree Implementation
7 8

3 4 5
Time to find all matches (ms)

Figure: Results in 3-dimensions with 3 groups

For 1000 participants in 3 groups with 3 dimensions
e Brute Force: 19.6 hours
e kd-tree Algorithm: 3.6 seconds (19,427x speedup)
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Problem Statement

Informally, we want to make the smallest n disjoint matches with one participant from
each of k groups per match.

e Start with participants in one group,

e Find their closest matched participants of each other group (nearest neighbor),




Motivation Formal Definition

[e]e]ee]e}
0000000000000 000

@ WNotivation

® Formal Definition
® Definitions
# Size Function

® Current Approaches

Current Approaches kd-tree Algorithm

[e]
[e]e]e}

Outline

Algorithm Analysis
[e]e]e)

(o]e}
000

Conclusions




Participant Definitions

Definition (Participant)

Let the point p € R? be a participant normalized over d defining characteristics
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Participant Definitions

Definition (Participant)

Let the point p € R? be a participant normalized over d defining characteristics

Definition (Set of all Participants)

The set P C R, is the set of all participants, such that:
P = Uf-‘zl G;, where each G; defines a treatment group

|Gi| =n
Pl =>_1Gi| = kn.
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Match Definitions

Definition (Match)

A set m C P is a match if it contains exactly one point from each G;:

|ml| =k,
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Match Definitions

Definition (Match)

A set m C P is a match if it contains exactly one point from each G;:

|ml| =k,

Definition (Set of all Matches)
Let M = {m: m is a match} be the set of all matches with

(M| =TT, |G| = n*
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Size of a Match

Definition
Match measure function size(m),

size: M — R,

independent of the order of the points in the match m, must give a consistent
measurement of the match.

Ideal measure: minimize the sum of the distance between all points
e Fully connected graph

e Quadratic on k
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Match Covering

Definition
M is a match covering of P if M is a set of disjoint matches:
McM

[M| = n
Vm,l € M where m # | then mN [ = ().
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Match Covering

Definition

M is a match covering of P if M is a set of disjoint matches:
McM
[M| = n
Vm,l € M where m # | then mN [ = ().

Definition
WLOG, assume M is sorted on size(m): Ym;,m; € M, i < j = size(m;) < size(m;).
Define ordering <, such that My <y, My if for some index i,

size(mg ;) < size(my ;) and ¥j < i, size(mg ;) = size(my )

Size of match in My less than size of match in My at the first place they differ
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Problem Statement

Find the minimal match covering, My, such that

Conclusions



Motivation Formal Definition Current Approaches kd-tree Algorithm Algorithm Analysis

00000 [e] 000
®000000000000000 [e]e]e} (o]e}
000

Match size function

What is the best method for measuring the size of a match?

Conclusions




Measuring Matches: by example

Sample points for one match.
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Measuring Matches: Area

o All colinear points have 0 area, regardless of distance

e Favors colinear points
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Measuring Matches: Perimeter

(d)

e Works for 2-dimensions, 3-colors
e Equivalent to Traveling Salesman as number of colors increases

e Not well defined in more dimensions
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Measuring Matches: Convex Hull

(f)

e Avoids TSP encountered with perimeter
o Q(nl9/2)) for d > 3

more
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Measuring Matches: Centroid

Vv

Linearly computable (on colors and dimensions)

Statistical sense: distance to an average point

Matches are intuitively small
Possible Measurements

e Max distance to centroid
e Average distance to centroid (variance)
e Sum of squared distances to centroid

more
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Perimeter Measure

For 3 or fewer groups, perimeter matches our ideal measurement. In this case,

size(m) = perimeter(m).




Proof of Correctness: Perimeter

Theorem

Given an initial match m containing point p; € Gy, which contains random points p;;,
one per G;j with j > 2, the perimeter will define the size of the match. Let us assume

that size(m) = q € R. Our search radius will then be the disc centered at p; with
radius 2. This area will contain the smallest match for p;.

32/62



Proof of Correctness: Perimeter




Proof of Correctness: Perimeter
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Centroid Measure

For a d-dimensional space and k colors per match, we consider the sum of squared
distances to the centroid.

The centroid of a match m is defined as

k

c(m) = % Z pi.

=1

Conclusions



Proof of Correctness: Centroid

Theorem

Given an initial match m containing point p; € Gy, which contains random points p;;,
one per G; with j > 2, the sum of squared distances to the centroid will define the size

of the match. Our search radius will be the disc centered at p; with radius k * s where s
is the max distance to centroid. This area will contain the smallest match for p;.
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Proof of Correctness: Centroid

2 maxc




Proof of Correctness: Centroid

2 maxc

maxce




Proof of Correctness

2 maxc

maxc maxe
P -7 . |—:|
sizefm) = 2 maxc

maxce

: Centroid
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Brute Force Approaches

Algorithm 2: O(n* log n) time, but O(n*) space.

Input: k sets of n points
Output: set of n ordered smallest matches of k points each

read input
foreach p; € G; do
foreach p; € G, do
... foreach py € Gx do
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Brute Force Approaches

Algorithm 1: O(n) space, but O(n**1) time.

Input: k sets of n points
Output: set of n ordered smallest matches of k points each
read input
fori=1:ndo
smallest = MAX

Msmajiest = null
foreach p; € G; do
f h

Conclusions



Voronoi Matching Algorithm

Voronoi Cells.
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Voronoi Matching Algorithm

Problems with the Voronoi algorithm

e Provides only an approximation for My
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kd-trees

Binary tree data structure used to store points in d-dimensional space.
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kd-tree Algorithm

Input: k sets of n points
Output: set of n ordered smallest matches of k points each

Gy = read input
for i < 2 to k do
G; = read input
T; = makeKDTree(G;)

pg = new PriorityQueue
matches = new ArrayList
foreach p; € G; do

| addPutativeMatches(p;, pq)
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addPutativeMatches Subroutine

Input: PriorityQueue pq, current point p; from Gj, kd-trees T; for each G, to Gy
Output: list of 10 smallest matches for point p;
for i + 2 to k do

|_ pi = T;.getnearest(pi_1)

small = size(p1, p2, .. + Pk)
search = get search distance from small
tqg = new PriorityQueue
tq.add(match(p1,p2, ... ,Pk))
for i < 2 to k do

|_ list; = T;.getnearest(p;_1, search)




Empirical Study: addPutativeMatches returns
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Figure: Empirical study varying number of matches returned by addPutativeMatches.
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Worst Case

] ¢ A

Worst case example (3 colors in 2 dimensions). Points in each G; are coincident with
each other (Vi : r; = (—1,0),gi = (0,0), b = (1,0)); all points are within the search area of
any match (r;, g, b;).
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addPutativeMatches Worst Case

Complexity
for i + 2 to k do
O(kdnl_l/d) |_ pi = T;.getnearest(pi_1)
0(1) small = size(p1, p2, ... + Pk)
O(kd) search = get search distance from small
0(1) tqg = new PriorityQueue
O(log n) tg.add(match(p1,p2, ... ,Pk))

for i < 2 to k do

O(kdn=1/d) | st = Tj.getnearest(p;_1, search)

foreach listy as p; do
foreach list3 as p3 do
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kd-tree Algorithm Worst Case
Complexity .
o(n) G; = read input
for i + 2 to k do
O(knlog n) G; = read input
T; = makeKDTree(G;)
883 pq = new PriorityQueue
matches = new ArrayList
foreach p; € G; do
k i
Ologlozin) |_ addPutativeMatches(p;, pq)
while pg not empty do
O(n* log n) m = pq.poll()
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Expected Case Assumption

For n points, 39 such that Ve-sized areas, there are less than den points in that region.
e This assumes a uniform distribution, per study design
e |ocation of the e-sized area is irrelevant

e As the density increases, the search radius becomes smaller




Motivation Formal Definition Current Approaches kd-tree Algorithm Algorithm Analysis Conclusions

[e]e]ee]e} [e] 000
0000000000000 000 [e]e]e} (o] J
000

Expected Case

Topmey = O(2(k —1)dn*~7 + log n) = O(kdn)
Tpaftlk,d = 0 (nTapmk,d) = O(kdn2)
Tpart2,y = O(nlogn+ nklogn) = O((k + 1)nlog n)




Empirical Study: Brute Force vs KD-Tree

‘ Parameter ‘ Values ‘
Number of Treatment Groups 3-4
Participants per Treatment Group 50, 100, 200, 300, 400, 500, 750, 1000
Confounding Factors per Participant 3

Table: Empirical test configurations.

Each configuration repeated 50 times.
Centurion cluster nodes

e 1.6 GHz dual-core Opteron
e 3GB RAM
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Empirical Study: Brute Force vs KD-Tree
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Figure: Results in 3-dimensions with 3 groups (log-scale x-axis)
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Empirical Study: Brute Force vs KD-Tree
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Figure: Empirical study comparing brute force and the kd-tree algorithm. (log-scale x-axis)

50 /62



Motivation Formal Definition

[e]e]ee]e}
0000000000000 000

@ WNotivation

@ Formal Definition
e Definitions
® Size Function

® Current Approaches

Current Approaches kd-tree Algorithm

[e]
[e]e]e}

Outline

Algorithm Analysis

Conclusions




Future Directions

Alternative applications for the algorithm
Combining kd-trees and voronoi cells

e Some research into using voronoi cells to speed kd-tree lookups

e Utilize kd-trees to build effective voronoi diagrams (completed)

e Extracting matches using the effective voronoi diagrams before completion using
the kd-tree algorithm

Other assumptions for expected cases

e Alternate distributions
e Slowly growing ¢ in our expected assumption

Other match measure functions

Reduce the search area once a smaller match is found
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Research Plan

Proposed research directions:

v/ Generalize the kd-tree algorithm to an arbitrary k colors in d dimensions, as
defined in the problem statement,

v/ Analyze the time complexity of the k-d tree algorithm for both worst-case and
expected case running times,

v/ Examine other methods for defining the size of a match that are not dependent or
limited by dimensionality, number of colors, or ordering of the points,

\/ Prove algorithm correctness.
Additional research directions:
/ Perform an empirical study of addPutativeMatches return values,

\/ Perform an empirical study comparing brute force to the kd-tree algorithm for 3-5
groups in 3-4 dimensions.
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addPutativeMatches Analysis

Complexity
for i < 2 to k do

|_ pi = T;.getnearest(pi_1)

small = size(p1, p2, .. , Pk)
search = get search distance from small
tqg = new PriorityQueue
tg.add(match(p1,p2, ... ,Pk))
for i + 2 to k do

|_ list; = T;.getnearest(p;_1, search)

foreach listy as p; do




addPutativeMatches Analysis

Complexity
for i < 2 to k do
O(k)
|_ pi = T;.getnearest(pi_1)
small = size(p1, p2, .. , Pk)

search = get search distance from small
tqg = new PriorityQueue
tg.add(match(p1,p2, ... ,Pk))
for i + 2 to k do

|_ list; = T;.getnearest(p;_1, search)

foreach listy as p; do




addPutativeMatches Analysis

Complexity .
o(k) for i < 2 to k do
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search = get search distance from small
tqg = new PriorityQueue
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kd-tree Algorithm Analysis

Complexity .
o(n) G; = read input

for i + 2 to k do
G; = read input
T; = makeKDTree(G;)

pq = new PriorityQueue
matches = new ArrayList
foreach p; € G; do

|_ addPutativeMatches(p;, pq)

while pg not empty do
m = pq.poll




kd-tree Algorithm Analysis

Complexity .
o(n) Gy = read input
0(k) for i < 2 to k do

G; = read input
T; = makeKDTree(G;)

pq = new PriorityQueue
matches = new ArrayList
foreach p; € G; do

|_ addPutativeMatches(p;, pq)

while pg not empty do
m = pq.poll




kd-tree Algorithm Analysis

Complexity .
O(n) G1 = read input
O(k) for i < 2 to k do
O(n+ nlogn) G; = read input
T; = makeKDTree(G;)

pq = new PriorityQueue
matches = new ArrayList
foreach p; € G; do

|_ addPutativeMatches(p;, pq)

while pg not empty do
m = pq.poll
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Measuring Matches: Convex Hull

e Avoids TSP encountered with perimeter
o Q(nl9/2)) for d > 3

back
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kd-tree Data Structure

kd-trees
e Multi-dimensional data structure introduced by Bentley (1975)




kd-tree Data Structure

Insert
e Search for node in the tree, if not found, add node
e Average cost: O(logn) ~ 1.386 log, n (by Knuth)
e Can use Insert to build kd-tree

e Inserting random nodes to build kd-tree is statistically similar to building bst
e Build cost: O(nlog n) for sufficiently random nodes

Optimize
e Given all n nodes, build an optimal kd-tree
e Uses the median for each dimension as discriminator for that level
e O(nlogn) running time
e Maximum path length: |log, n]
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kd-tree Data Structure

Delete
e Must replace node with j-max element of left tree or j-min element of right tree
e Worst Case Cost: O(n*~1/9), dominated by find min/max
o Average Delete Cost: O(log n)

Nearest Neighbor Queries




Proof of Correctness: Centroid

We want to find r such that given m with k points,

s = max (Z(p, - c,(m))2> ,Vp € m,

I=1

where s is the maximum Euclidean distance to centroid.
. . - 2




Proof of Correctness: Centroid

e Second, there exists p; outside of r, with p;, p; € m’. Let x and y be the distance
from p; and p; to ¢(m’), respectively. By assumption, x + y > r. Since
size(m) < ks?, we show

size(m) < ks®> < x* + y? < size(m').
With minimal x + y, x +y = r. Then we know

r2

§x2+y2§r2.




Centroid Measures

Visible differences between max, average (variance), and sum of squared distances to
the centroid.

) Max distance (d) Average distance (e) Sum of squares
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Centroid Measures

Equivalent matches under each measure to the centroid.

Lo
./I\.i.

(f) Max distance (g) Average distance




kd-tree Empirical Performance
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