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Motivation

• Epidemiology: Clinical Trials
• Phase II and III pre-market trials
• After-market Phase IV trials against 3+ treatments

• Trials requiring similar groups to avoid confounding
• Participants with similar comorbidities (diseases, ...)
• Participants with similar traits (age, weight, height, ...)

• Propensity Scores
• Probability, given certain factors, that a person will be given a certain treatment
• Want to match participants with similar propensity scores
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Why doesn’t this nearest neighbor approach work for more groups?

• b1 and g closest points to r

• Triangle rgb2 has smaller perimeter than rgb1

12 / 62



Motivation Formal Definition Current Approaches kd-tree Algorithm Algorithm Analysis Conclusions

Current Approaches

For two treatment groups

• Propensity scores used to reduce dimensionality

• Brute force or nearest neighbor searches

For more than two groups

• Brute force
• Requires O(nk log n) time using O(nk) space
• Less efficient brute force uses O(n) space, but O(nk+1) time
• Problem: must consider all matches
• Not feasible for large n

kd-tree algorithm, under a uniform distribution, will perform in O(kdn2) time and O(n)
space.
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The End: Spoilers
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Figure: Results in 3-dimensions with 3 groups

For 1000 participants in 3 groups with 3 dimensions

• Brute Force: 19.6 hours

• kd-tree Algorithm: 3.6 seconds (19,427x speedup)
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Problem Statement

Informally, we want to make the smallest n disjoint matches with one participant from
each of k groups per match.

• Start with participants in one group,

• Find their closest matched participants of each other group (nearest neighbor),

• Search within a small neighborhood of these points for a smaller match, if one
exists,

• Repeat, if necessary.
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Participant Definitions

Definition (Participant)

Let the point p ∈ Rd be a participant normalized over d defining characteristics

Definition (Set of all Participants)

The set P ⊆ Rd , is the set of all participants, such that:

• P = ∪ki=1Gi , where each Gi defines a treatment group

• |Gi | = n

• |P| =
∑

i |Gi | = kn.
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Match Definitions

Definition (Match)

A set m ⊆ P is a match if it contains exactly one point from each Gi :

• |m| = k,

• |m ∩ Gi | = 1, ∀i .

Definition (Set of all Matches)

Let M = {m : m is a match} be the set of all matches with

|M| =
∏

i |Gi | = nk
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Size of a Match

Definition
Match measure function size(m),

size :M→ R,

independent of the order of the points in the match m, must give a consistent
measurement of the match.

Ideal measure: minimize the sum of the distance between all points

• Fully connected graph

• Quadratic on k
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Match Covering

Definition
M is a match covering of P if M is a set of disjoint matches:

• M ⊂M
• |M | = n

• ∀m, l ∈ M where m 6= l then m ∩ l = ∅.

Definition
WLOG, assume M is sorted on size(m): ∀mi ,mj ∈ M , i < j =⇒ size(mi) < size(mj).
Define ordering <M such that M0 <M M1 if for some index i ,

size(m0,i) < size(m1,i) and ∀j < i , size(m0,j) = size(m1,j)

• Size of match in M0 less than size of match in M1 at the first place they differ
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Problem Statement

Find the minimal match covering, M0, such that

∀i ,M0 ≤M Mi .
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Match size function

What is the best method for measuring the size of a match?
Perimeter? Convex Hull? Something else?
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Measuring Matches: by example

Figure: Sample points for one match.
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Measuring Matches: Area

(a) (b) (c)

• All colinear points have 0 area, regardless of distance

• Favors colinear points
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Measuring Matches: Perimeter

(d) (e)

• Works for 2-dimensions, 3-colors

• Equivalent to Traveling Salesman as number of colors increases

• Not well defined in more dimensions
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Measuring Matches: Convex Hull

(f)

• Avoids TSP encountered with perimeter

• Ω(nbd/2c) for d > 3

more
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Measuring Matches: Centroid

• Linearly computable (on colors and dimensions)

• Statistical sense: distance to an average point

• Matches are intuitively small

• Possible Measurements
• Max distance to centroid
• Average distance to centroid (variance)
• Sum of squared distances to centroid

more
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Perimeter Measure

For 3 or fewer groups, perimeter matches our ideal measurement. In this case,

size(m) = perimeter(m).

This definition leads to a search radius of

search(m) =
1

2
size(m).
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Proof of Correctness: Perimeter

Theorem
Given an initial match m containing point pi ∈ G1, which contains random points pr j ,
one per Gj with j ≥ 2, the perimeter will define the size of the match. Let us assume
that size(m) = q ∈ R. Our search radius will then be the disc centered at pi with
radius q

2
. This area will contain the smallest match for pi .
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Proof of Correctness: Perimeter
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Centroid Measure
For a d-dimensional space and k colors per match, we consider the sum of squared
distances to the centroid.

The centroid of a match m is defined as

c(m) =
1

k

k∑
i=1

pi .

Our size(m) function, using sum of squared distances to the centroid, is defined as

size(m) =
k∑

i=1

(
d∑

j=1

(pi ,j − cj(m))2

)2

.

This definition leads to a search radius of

search(m) = k ∗max distance to centroid.
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Proof of Correctness: Centroid

Theorem
Given an initial match m containing point pi ∈ G1, which contains random points pr j ,
one per Gj with j ≥ 2, the sum of squared distances to the centroid will define the size
of the match. Our search radius will be the disc centered at pi with radius k ∗ s where s
is the max distance to centroid. This area will contain the smallest match for pi .
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Proof of Correctness: Centroid
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Proof of Correctness: Centroid

more
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Brute Force Approaches

Algorithm 2: O(nk log n) time, but O(nk) space.

Input: k sets of n points
Output: set of n ordered smallest matches of k points each

read input
foreach p1 ∈ G1 do

foreach p2 ∈ G2 do
. . . foreach pk ∈ Gk do

M ← m = {p1, p2, ..., pk}

sort(M)
foreach M do

if p1, p2, ..., pk clean then
Mans ← m

return Mans
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Brute Force Approaches

Algorithm 1: O(n) space, but O(nk+1) time.

Input: k sets of n points
Output: set of n ordered smallest matches of k points each

read input
for i = 1 : n do

smallest = MAX
msmallest = null
foreach p1 ∈ G1 do

foreach p2 ∈ G2 do
. . .foreach pk ∈ Gk do

if size(m = {p1, p2, ..., pk}) < smallest then
msmallest = m
smallest = size(m)

Mans ← msmallest

remove p1, p2, ..., pk from G1,G2, ...,Gk

return Mans
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Voronoi Matching Algorithm
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Figure: Voronoi Cells.
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Voronoi Matching Algorithm

Problems with the Voronoi algorithm

• Provides only an approximation for M0

• Worst and expected case complexity O(n4) for 3 groups

• Required searching for points in polygons
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kd-trees
Binary tree data structure used to store points in d-dimensional space.

more
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kd-tree Algorithm
Input: k sets of n points
Output: set of n ordered smallest matches of k points each

G1 = read input
for i ← 2 to k do

Gi = read input
Ti = makeKDTree(Gi )

pq = new PriorityQueue
matches = new ArrayList
foreach pi ∈ G1 do

addPutativeMatches(pi , pq)

while pq not empty do
m = pq.poll()
if all points are unused then

foreach i ≤ k do
Ti .remove(m.i)

matches.add(m)

else
if point m.1 ∈ G1 is unused then

if no more matches available then
addPutativeMatches(m.1, pq)
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addPutativeMatches Subroutine
Input: PriorityQueue pq, current point p1 from G1, kd-trees Ti for each G2 to Gk

Output: list of 10 smallest matches for point p1

for i ← 2 to k do
pi = Ti .getnearest(pi−1)

small = size(p1, p2, ... , pk )
search = get search distance from small
tq = new PriorityQueue
tq.add(match(p1,p2, ... ,pk ))
for i ← 2 to k do

listi = Ti .getnearest(pi−1, search)

foreach list2 as p2 do
foreach list3 as p3 do

... foreach listk as pk do
dist = size(p1,p2, ... ,pk )
if dist ≤ small then

tq.add(match(p1,p2, ... ,pk ))

for i ← 1 to 10 do
m = tq.poll()
pq.add(m);
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Empirical Study: addPutativeMatches returns
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Figure: Empirical study varying number of matches returned by addPutativeMatches.
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Worst Case

Figure: Worst case example (3 colors in 2 dimensions). Points in each Gi are coincident with
each other (∀i : ri = (−1, 0), gi = (0, 0), bi = (1, 0)); all points are within the search area of
any match (ri , gi , bi ).
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addPutativeMatches Worst Case

Complexity

O(k)

O(kdn1−1/d )
O(1)
O(kd)
O(1)
O(log n)

O(k)

O(kdn1−1/d )

a

O(n)×
O(n)×
×...× O(n)

O(kdnk−1)
O(nk−1 log nk−1)

a
b
c

O(10 log nk−1)

a
b
c
d

for i ← 2 to k do
pi = Ti .getnearest(pi−1)

small = size(p1, p2, ... , pk )
search = get search distance from small
tq = new PriorityQueue
tq.add(match(p1,p2, ... ,pk ))
for i ← 2 to k do

listi = Ti .getnearest(pi−1, search)

foreach list2 as p2 do
foreach list3 as p3 do

... foreach listk as pk do
dist = size(p1,p2, ... ,pk )
if dist ≤ small then

tq.add(match(p1,p2, ... ,pk ))

for i ← 1 to 10 do
m = tq.poll()
pq.add(m);

O(nk−1 log n + kdnk−1 + 2kdn1−1/d ) more
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kd-tree Algorithm Worst Case
Complexity
O(n)

O(k)

O(kn log n)

a

O(1)
O(1)

O(n)

O(nk log n)

a

O(nk )

O(nk log n)

a
b
c

O(nk log n)
O(n log n)

a

O(nk − n)
a
b

O(n2k−1 log n)

a
b
c

G1 = read input
for i ← 2 to k do

Gi = read input
Ti = makeKDTree(Gi )

pq = new PriorityQueue
matches = new ArrayList
foreach pi ∈ G1 do

addPutativeMatches(pi , pq)

while pq not empty do
m = pq.poll()
if all points are unused then

foreach i ≤ k do
Ti .remove(m.i)

matches.add(m)

else
if point m.1 ∈ G1 is unused then

if no more matches available then
addPutativeMatches(m.1, pq)

O
(
n2k−1 log n + knk+1 log n + kdnk+1

)
more
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Expected Case Assumption

For n points, ∃δ such that ∀ε-sized areas, there are less than δεn points in that region.

• This assumes a uniform distribution, per study design

• Location of the ε-sized area is irrelevant

• As the density increases, the search radius becomes smaller

• For a small area ε ≈ 1/n, number of points appears constant in that area (δ)
• Since we look at the k closest neighbors to a point

55 / 62



Motivation Formal Definition Current Approaches kd-tree Algorithm Algorithm Analysis Conclusions

Expected Case

Tapmk,d
= O(2(k − 1)dn1− 1

d + log n) = O(kdn)

Tpart1k,d = O
(
nTapmk,d

)
= O(kdn2)

Tpart2k,d = O (n log n + nk log n) = O((k + 1)n log n)

with the total time complexity reducing to

Tkdtree = Tbuildkds + Tpart1k,d + Tpart2k,d

= O
(
(k − 1)(n log n) + kdn2 + (k + 1)n log n

)
= O(kdn2).
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Empirical Study: Brute Force vs KD-Tree

Parameter Values

Number of Treatment Groups 3 - 4
Participants per Treatment Group 50, 100, 200, 300, 400, 500, 750, 1000
Confounding Factors per Participant 3

Table: Empirical test configurations.

Each configuration repeated 50 times.
Centurion cluster nodes

• 1.6 GHz dual-core Opteron

• 3GB RAM
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Empirical Study: Brute Force vs KD-Tree
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Figure: Results in 3-dimensions with 3 groups (log-scale x-axis)
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Empirical Study: Brute Force vs KD-Tree
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Figure: Empirical study comparing brute force and the kd-tree algorithm. (log-scale x-axis)
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Future Directions

• Alternative applications for the algorithm

• Combining kd-trees and voronoi cells
• Some research into using voronoi cells to speed kd-tree lookups
• Utilize kd-trees to build effective voronoi diagrams (completed)
• Extracting matches using the effective voronoi diagrams before completion using

the kd-tree algorithm

• Other assumptions for expected cases
• Alternate distributions
• Slowly growing δ in our expected assumption

• Other match measure functions

• Reduce the search area once a smaller match is found
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Research Plan

Proposed research directions:
√

Generalize the kd-tree algorithm to an arbitrary k colors in d dimensions, as
defined in the problem statement,

√
Analyze the time complexity of the k-d tree algorithm for both worst-case and
expected case running times,

√
Examine other methods for defining the size of a match that are not dependent or
limited by dimensionality, number of colors, or ordering of the points,

√
Prove algorithm correctness.

Additional research directions:
√

Perform an empirical study of addPutativeMatches return values,
√

Perform an empirical study comparing brute force to the kd-tree algorithm for 3-5
groups in 3-4 dimensions.
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addPutativeMatches Analysis

Complexity

O(k)
O(1)
O(kd)
O(1)
O(log n)
O(k)
a

O(n)×
O(n)×
×...× O(n)
a
b
c

O(10 log nk−1)
a
b
c
d

for i ← 2 to k do
pi = Ti .getnearest(pi−1)

small = size(p1, p2, ... , pk )
search = get search distance from small
tq = new PriorityQueue
tq.add(match(p1,p2, ... ,pk ))
for i ← 2 to k do

listi = Ti .getnearest(pi−1, search)

foreach list2 as p2 do
foreach list3 as p3 do

... foreach listk as pk do
dist = size(p1,p2, ... ,pk )
if dist ≤ small then

tq.add(match(p1,p2, ... ,pk ))

for i ← 1 to 10 do
m = tq.poll()
pq.add(m);

O(nk−1 log n + kdnk−1 + 2kdn1−1/d )

back
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kd-tree Algorithm Analysis
Complexity
O(n)

O(k)
a

O(1)
O(1)
O(n)
a

O(nk )
a
b
c

O(n(k log n + log n))
a

O(nk − n)
a
b
a
b
c

G1 = read input
for i ← 2 to k do

Gi = read input
Ti = makeKDTree(Gi )

pq = new PriorityQueue
matches = new ArrayList
foreach pi ∈ G1 do

addPutativeMatches(pi , pq)

while pq not empty do
m = pq.poll()
if all points are unused then

foreach i ≤ k do
Ti .remove(m.i)

matches.add(m)

else
if point m.1 ∈ G1 is unused then

if no more matches available then
addPutativeMatches(m.1, pq)

O
(
n2k−1 log n + knk+1 log n + kdnk+1

)
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kd-tree Algorithm Analysis
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Measuring Matches: Convex Hull

(a) (b)

• Avoids TSP encountered with perimeter

• Ω(nbd/2c) for d > 3

back
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kd-tree Data Structure

kd-trees

• Multi-dimensional data structure introduced by Bentley (1975)

• Based on binary search trees

• Each level i divides the search space in dimension i mod d
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kd-tree Data Structure

Insert

• Search for node in the tree, if not found, add node

• Average cost: O(log n) ≈ 1.386 log2 n (by Knuth)

• Can use Insert to build kd-tree
• Inserting random nodes to build kd-tree is statistically similar to building bst
• Build cost: O(n log n) for sufficiently random nodes

Optimize

• Given all n nodes, build an optimal kd-tree

• Uses the median for each dimension as discriminator for that level

• O(n log n) running time

• Maximum path length: blog2 nc
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kd-tree Data Structure

Delete

• Must replace node with j-max element of left tree or j-min element of right tree

• Worst Case Cost: O(n1−1/d), dominated by find min/max

• Average Delete Cost: O(log n)

Nearest Neighbor Queries

• Bentley’s Original algorithm: empirically O(log n) (redacted)

• Friedman and Bentley: empirically O(log2 n)

• Lee and Wong (’80): Worst case: O(n1−1/k)

back
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Proof of Correctness: Centroid

We want to find r such that given m with k points,

s = max

(
d∑

l=1

(pl − cl(m))2

)
,∀p ∈ m,

where s is the maximum Euclidean distance to centroid.

• First, consider size(m) ≤ ks2. Remember,

size(m) =
k∑

i=1

(
d∑

j=1

(pi ,j − cj(m))2

)2

Since
∑d

j=1 (pi ,j − cj(m))2 ≤ s for all i , this is trivially true.
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Proof of Correctness: Centroid
• Second, there exists pj outside of r , with pj , pi ∈ m′. Let x and y be the distance

from pi and pj to c(m′), respectively. By assumption, x + y ≥ r . Since
size(m) ≤ ks2, we show

size(m) ≤ ks2 ≤ x2 + y 2 ≤ size(m′).

With minimal x + y , x + y = r . Then we know

r 2

2
≤ x2 + y 2 ≤ r 2.

Therefore

ks2 ≤ r 2

2

ks2 ≤ k2s2

2
2 ≤ k .

back
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Centroid Measures

Visible differences between max, average (variance), and sum of squared distances to
the centroid.
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Centroid Measures

Equivalent matches under each measure to the centroid.

(f) Max distance (g) Average distance
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kd-tree Empirical Performance
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