KD-Tree Algorithm for Propensity Score Matching PhD Qualifying Exam Defense

John R Hott
University of Virginia

May 11, 2012

Motivation

- Epidemiology: Clinical Trials
- Phase II and III pre-market trials
- After-market Phase IV trials against 3+ treatments
- Trials requiring similar groups to avoid confounding
- Participants with similar comorbidities (diseases, ...)
- Participants with similar traits (age, weight, height, ...)
- Propensity Scores
- Probability, given certain factors, that a person will be given a certain treatment
- Want to match participants with similar propensity scores

Advil

Tylenol

Advil

Tylenol

Advil

Advil

Tylenol

$9 / 62$

Why doesn't this nearest neighbor approach work for more groups?

- b_{1} and g closest points to r
- Triangle $r g b_{2}$ has smaller perimeter than $r g b_{1}$

Current Approaches

For two treatment groups

- Propensity scores used to reduce dimensionality
- Brute force or nearest neighbor searches

For more than two groups

- Brute force
- Requires $O\left(n^{k} \log n\right)$ time using $O\left(n^{k}\right)$ space
- Less efficient brute force uses $O(n)$ space, but $O\left(n^{k+1}\right)$ time
- Problem: must consider all matches
- Not feasible for large n
kd-tree algorithm, under a uniform distribution, will perform in $O\left(k d n^{2}\right)$ time and $O(n)$ space.

The End: Spoilers

Figure: Results in 3-dimensions with 3 groups

For 1000 participants in 3 groups with 3 dimensions

- Brute Force: 19.6 hours
- kd-tree Algorithm: 3.6 seconds $(19,427 \times$ speedup)

Problem Statement

Informally, we want to make the smallest n disjoint matches with one participant from each of k groups per match.

- Start with participants in one group,
- Find their closest matched participants of each other group (nearest neighbor),
- Search within a small neighborhood of these points for a smaller match, if one exists,
- Repeat, if necessary.

Outline

2 Formal Definition

- Definitions
- Size Function

C Current Approaches

- kd-tree Algorithm
- kd-trees
- Algorithm Description
(5) Agorithm Analysis
- Worst Case

Participant Definitions

Definition (Participant)
 Let the point $p \in \mathbb{R}^{d}$ be a participant normalized over d defining characteristics

Participant Definitions

Definition (Participant)

Let the point $p \in \mathbb{R}^{d}$ be a participant normalized over d defining characteristics

Definition (Set of all Participants)

The set $\mathcal{P} \subseteq \mathbb{R}^{d}$, is the set of all participants, such that:

- $\mathcal{P}=\cup_{i=1}^{k} G_{i}$, where each G_{i} defines a treatment group
- $\left|G_{i}\right|=n$
- $|\mathcal{P}|=\sum_{i}\left|G_{i}\right|=k n$.

Match Definitions

Definition (Match)

A set $m \subseteq \mathcal{P}$ is a match if it contains exactly one point from each G_{i} :

- $|m|=k$,
- $\left|m \cap G_{i}\right|=1, \forall i$.

Match Definitions

Definition (Match)

A set $m \subseteq \mathcal{P}$ is a match if it contains exactly one point from each G_{i} :

- $|m|=k$,
- $\left|m \cap G_{i}\right|=1, \forall i$.

Definition (Set of all Matches)
Let $\mathcal{M}=\{m: m$ is a match $\}$ be the set of all matches with

$$
|\mathcal{M}|=\prod_{i}\left|G_{i}\right|=n^{k}
$$

Size of a Match

Definition

Match measure function size(m),

$$
\text { size }: \mathcal{M} \rightarrow \mathbb{R}
$$

independent of the order of the points in the match m, must give a consistent measurement of the match.

Ideal measure: minimize the sum of the distance between all points

- Fully connected graph
- Quadratic on k

Match Covering

Definition

M is a match covering of \mathcal{P} if M is a set of disjoint matches:

- $M \subset \mathcal{M}$
- $|M|=n$
- $\forall m, I \in M$ where $m \neq I$ then $m \cap I=\emptyset$.

Match Covering

Definition

M is a match covering of \mathcal{P} if M is a set of disjoint matches:

- $M \subset \mathcal{M}$
- $|M|=n$
- $\forall m, I \in M$ where $m \neq I$ then $m \cap I=\emptyset$.

Definition

WLOG, assume M is sorted on $\operatorname{size}(m): \forall m_{i}, m_{j} \in M, i<j \Longrightarrow \operatorname{size}\left(m_{i}\right)<\operatorname{size}\left(m_{j}\right)$. Define ordering $<_{M}$ such that $M_{0}<_{M} M_{1}$ if for some index i,

$$
\operatorname{size}\left(m_{0, i}\right)<\operatorname{size}\left(m_{1, i}\right) \text { and } \forall j<i, \operatorname{size}\left(m_{0, j}\right)=\operatorname{size}\left(m_{1, j}\right)
$$

- Size of match in M_{0} less than size of match in M_{1} at the first place they differ

Problem Statement

Find the minimal match covering, M_{0}, such that
$\forall i, M_{0} \leq M M_{i}$.

Match size function

What is the best method for measuring the size of a match? Perimeter? Convex Hull? Something else?

Measuring Matches: by example

Measuring Matches: Area

- All colinear points have 0 area, regardless of distance
- Favors colinear points

Measuring Matches: Perimeter

- Works for 2-dimensions, 3-colors
- Equivalent to Traveling Salesman as number of colors increases
- Not well defined in more dimensions

Measuring Matches: Convex Hull

(f)

- Avoids TSP encountered with perimeter
- $\Omega\left(n^{\lfloor d / 2\rfloor}\right)$ for $d>3$

Measuring Matches: Centroid

- Linearly computable (on colors and dimensions)
- Statistical sense: distance to an average point
- Matches are intuitively small
- Possible Measurements
- Max distance to centroid
- Average distance to centroid (variance)
- Sum of squared distances to centroid

Perimeter Measure

For 3 or fewer groups, perimeter matches our ideal measurement. In this case,

$$
\operatorname{size}(m)=\operatorname{perimeter}(m) .
$$

This definition leads to a search radius of

$$
\operatorname{search}(m)=\frac{1}{2} \operatorname{size}(m) .
$$

Proof of Correctness: Perimeter

Theorem

Given an initial match m containing point $p_{i} \in G_{1}$, which contains random points $p_{r j}$, one per G_{j} with $j \geq 2$, the perimeter will define the size of the match. Let us assume that $\operatorname{size}(m)=q \in \mathbb{R}$. Our search radius will then be the disc centered at p_{i} with radius $\frac{q}{2}$. This area will contain the smallest match for p_{i}.

Proof of Correctness: Perimeter

Proof of Correctness: Perimeter

Proof of Correctness: Perimeter

Centroid Measure

For a d-dimensional space and k colors per match, we consider the sum of squared distances to the centroid.

The centroid of a match m is defined as

$$
c(m)=\frac{1}{k} \sum_{i=1}^{k} p_{i}
$$

Our size (m) function, using sum of squared distances to the centroid, is defined as

$$
\operatorname{size}(m)=\sum_{i=1}^{k}\left(\sum_{j=1}^{d}\left(p_{i, j}-c_{j}(m)\right)^{2}\right)^{2} .
$$

This definition leads to a search radius of

$$
\operatorname{search}(m)=k * \max \text { distance to centroid. }
$$

Proof of Correctness: Centroid

Theorem

Given an initial match m containing point $p_{i} \in G_{1}$, which contains random points $p_{r_{j}}$, one per G_{j} with $j \geq 2$, the sum of squared distances to the centroid will define the size of the match. Our search radius will be the disc centered at p_{i} with radius $k * s$ where s is the max distance to centroid. This area will contain the smallest match for p_{i}.

Proof of Correctness: Centroid

Proof of Correctness: Centroid

Proof of Correctness: Centroid

Outline

- Motivation
- Formal Definition
- Definitions
- Size Function
© Current Approaches
Q kd-tree Algorithm
- kd-trees
- Algorithm Description
(1) Alsorithm Analvsis
- Worst Case
- Expected Case

Brute Force Approaches

Algorithm 2: $O\left(n^{k} \log n\right)$ time, but $O\left(n^{k}\right)$ space.
Input: k sets of n points
Output: set of n ordered smallest matches of k points each
read input
foreach $p_{1} \in G_{1}$ do
foreach $p_{2} \in G_{2}$ do
foreach $p_{k} \in G_{k}$ do
$M \leftarrow m=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$

sort(M)

foreach M do
if $p_{1}, p_{2}, \ldots, p_{k}$ clean then
$M_{\text {ans }} \leftarrow m$
return $M_{a n s}$

Brute Force Approaches

```
Algorithm 1: \(O(n)\) space, but \(O\left(n^{k+1}\right)\) time.
Input: \(k\) sets of \(n\) points
Output: set of \(n\) ordered smallest matches of \(k\) points each
read input
for \(i=1: n\) do
    smallest \(=\) MAX
    \(m_{\text {smallest }}=\) null
    foreach \(p_{1} \in G_{1}\) do
        foreach \(p_{2} \in G_{2}\) do
            foreach \(p_{k} \in G_{k}\) do
                if size \(\left(m=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}\right)<\) smallest then
                \(m_{\text {smallest }}=m\)
                smallest \(=\operatorname{size}(\mathrm{m})\)
    \(M_{\text {ans }} \leftarrow m_{\text {smallest }}\)
    remove \(p_{1}, p_{2}, \ldots, p_{k}\) from \(G_{1}, G_{2}, \ldots, G_{k}\)
return \(M_{\text {ans }}\)
```


Voronoi Matching Algorithm

Figure: Voronoi Cells.

Voronoi Matching Algorithm

Problems with the Voronoi algorithm

- Provides only an approximation for M_{0}
- Worst and expected case complexity $O\left(n^{4}\right)$ for 3 groups
- Required searching for points in polygons

Outline

- Motivation
- Formal Definition
- Definitions
- Size Function

Q Current Anproaches

- kd-tree Algorithm
- kd-trees
- Algorithm Description
(B) Aforithm Analvsis
- Worst Case

kd-trees

Binary tree data structure used to store points in d-dimensional space.

kd-tree Algorithm

Input: k sets of n points
Output: set of n ordered smallest matches of k points each
$G_{1}=$ read input
for $i \leftarrow 2$ to k do
$G_{i}=$ read input
$T_{i}=\operatorname{makeKDTree}\left(G_{i}\right)$
$p q=$ new PriorityQueue
matches $=$ new ArrayList
foreach $p_{i} \in G_{1}$ do
addPutativeMatches $\left(p_{i}, p q\right)$
while $p q$ not empty do
$m=p q . p o l l()$
if all points are unused then
foreach $i \leq k$ do
L T_{i}.remove(m.i)
matches.add (m)
else
if point $m .1 \in G_{1}$ is unused then
if no more matches available then
addPutativeMatches(m.1, pq)

addPutativeMatches Subroutine

Input: PriorityQueue pq, current point p_{1} from G_{1}, kd-trees T_{i} for each G_{2} to G_{k}
Output: list of 10 smallest matches for point p_{1}

```
for }i\leftarrow2\mathrm{ to }k\mathrm{ do
    pi= Ti.getnearest( }\mp@subsup{p}{i-1}{}
small = size( (pi, p},\mp@code{,.., p}\mp@subsup{p}{k}{}
search = get search distance from small
tq = new PriorityQueue
tq.add(match(p1,p},\ldots,\mp@subsup{p}{k}{})
for i
    list }\mp@subsup{|}{i}{=}\mp@subsup{T}{i}{}.\mathrm{ getnearest( (pi-1 , search)
foreach list2 as p}\mp@subsup{p}{2}{}\mathrm{ do
    foreach list3 as p}\mp@subsup{p}{3}{}\mathrm{ do
            foreach listk as p}\mp@subsup{p}{k}{}\mathrm{ do
                        dist = size(pl, p2, .. ,p
                        if dist \leq small then
                            tq.add(match(p1,p2, .. ,p
for i
    m=tq.poll()
    pq.add(m);
```


Empirical Study: addPutativeMatches returns

Figure: Empirical study varying number of matches returned by addPutativeMatches.

Outline

- Motivation

Q Formal Definition

- Definitions
- Size Function

Q Current Anproaches
n kd-tree Algorithm

- kd-trees
- Algorithm Description
© Algorithm Analysis
- Worst Case
- Expected Case
- Empirical Study

Worst Case

Worst case example (3 colors in 2 dimensions). Points in each G_{i} are coincident with each other $\left(\forall i: r_{i}=(-1,0), g_{i}=(0,0), b_{i}=(1,0)\right)$; all points are within the search area of any match $\left(r_{i}, g_{i}, b_{i}\right)$.

addPutativeMatches Worst Case

kd-tree Algorithm Worst Case

Expected Case Assumption

For n points, $\exists \delta$ such that $\forall \varepsilon$-sized areas, there are less than $\delta \varepsilon n$ points in that region.

- This assumes a uniform distribution, per study design
- Location of the ε-sized area is irrelevant
- As the density increases, the search radius becomes smaller
- For a small area $\varepsilon \approx 1 / n$, number of points appears constant in that area (δ)
- Since we look at the k closest neighbors to a point

Expected Case

$$
\begin{aligned}
& T_{\text {apm }}^{k, d} \\
&=O\left(2(k-1) d n^{1-\frac{1}{d}}+\log n\right)=O(k d n) \\
& T_{p a r t 1_{k, d}}=O\left(n T_{a p m_{k, d}}\right)=O\left(k d n^{2}\right) \\
& T_{p a r t 2 k, d}=O(n \log n+n k \log n)=O((k+1) n \log n)
\end{aligned}
$$

with the total time complexity reducing to

$$
\begin{aligned}
T_{\text {kdtree }} & =T_{\text {build }_{k \text { ks }}}+T_{\text {part1k,d }}+T_{\text {part2 } 2_{k, d}} \\
& =O\left((k-1)(n \log n)+k d n^{2}+(k+1) n \log n\right) \\
& =O\left(k d n^{2}\right) .
\end{aligned}
$$

Empirical Study: Brute Force vs KD-Tree

Parameter	Values
Number of Treatment Groups	$3-4$
Participants per Treatment Group	$50,100,200,300,400,500,750,1000$
Confounding Factors per Participant	3

Table: Empirical test configurations.

Each configuration repeated 50 times.
Centurion cluster nodes

- 1.6 GHz dual-core Opteron
- 3GB RAM

Empirical Study: Brute Force vs KD-Tree

Figure: Results in 3 -dimensions with 3 groups (log-scale x-axis)

Empirical Study: Brute Force vs KD-Tree

Figure: Empirical study comparing brute force and the kd-tree algorithm. (log-scale x-axis)

Outline

- Motivation
- Formal Definition
- Definitions
- Size Function

Q Current Approaches
n kd-tree Algorithm

- kd-trees
- Algorithm Description
(1) Alsorithm Analveis
- Worst Case
- Expected Case
-

© Conclusions

Future Directions

- Alternative applications for the algorithm
- Combining kd-trees and voronoi cells
- Some research into using voronoi cells to speed kd-tree lookups
- Utilize kd-trees to build effective voronoi diagrams (completed)
- Extracting matches using the effective voronoi diagrams before completion using the kd-tree algorithm
- Other assumptions for expected cases
- Alternate distributions
- Slowly growing δ in our expected assumption
- Other match measure functions
- Reduce the search area once a smaller match is found

Research Plan

Proposed research directions:
$\sqrt{ }$ Generalize the kd-tree algorithm to an arbitrary k colors in d dimensions, as defined in the problem statement,
$\sqrt{ }$ Analyze the time complexity of the k-d tree algorithm for both worst-case and expected case running times,
$\sqrt{ }$ Examine other methods for defining the size of a match that are not dependent or limited by dimensionality, number of colors, or ordering of the points,
$\sqrt{ }$ Prove algorithm correctness.
Additional research directions:
$\sqrt{ }$ Perform an empirical study of addPutativeMatches return values,
$\sqrt{ }$ Perform an empirical study comparing brute force to the kd-tree algorithm for 3-5 groups in 3-4 dimensions.

Questions?

addPutativeMatches Analysis

Complexity

```
for \(i \leftarrow 2\) to \(k\) do
    \(p_{i}=T_{i}\).getnearest \(\left(p_{i-1}\right)\)
small \(=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\)
search \(=\) get search distance from small
\(t q=\) new PriorityQueue
\(t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)\)
for \(i \leftarrow 2\) to \(k\) do
    \(L \quad\) list \(_{i}=T_{i}\).getnearest \(\left(p_{i-1}\right.\), search \()\)
foreach list \(2_{2}\) as \(p_{2}\) do
        foreach list \({ }_{3}\) as \(p_{3}\) do
            foreach list \({ }_{k}\) as \(p_{k}\) do
                dist \(=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\)
                        if dist \(\leq\) small then
                            \(t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)\)
for \(i \leftarrow 1\) to 10 do
        \(m=t q \cdot p o l l()\)
    \(p q . a d d(m)\);
```


addPutativeMatches Analysis

Complexity O(k)

```
for \(i \leftarrow 2\) to \(k\) do
    \(p_{i}=T_{i}\).getnearest \(\left(p_{i-1}\right)\)
small \(=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\)
search \(=\) get search distance from small
\(t q=\) new PriorityQueue
\(t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)\)
for \(i \leftarrow 2\) to \(k\) do
    list \(_{i}=T_{i}\).getnearest \(\left(p_{i-1}\right.\), search \()\)
foreach list \(2_{2}\) as \(p_{2}\) do
        foreach list \({ }_{3}\) as \(p_{3}\) do
            foreach list \({ }_{k}\) as \(p_{k}\) do
                dist \(=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\)
                        if dist \(\leq\) small then
                                \(t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)\)
for \(i \leftarrow 1\) to 10 do
        \(m=t q \cdot p o l l()\)
    \(p q . a d d(m)\);
```


addPutativeMatches Analysis

Complexity
$O(k)$
$O\left(d n^{1-1 / d}\right)$

```
for \(i \leftarrow 2\) to \(k\) do
    \(L p_{i}=T_{i}\).getnearest \(\left(p_{i-1}\right)\)
small \(=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\)
search \(=\) get search distance from small
\(t q=\) new PriorityQueue
\(t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)\)
for \(i \leftarrow 2\) to \(k\) do
    list \(_{i}=T_{i}\).getnearest \(\left(p_{i-1}\right.\), search \()\)
foreach list \(2_{2}\) as \(p_{2}\) do
        foreach list \({ }_{3}\) as \(p_{3}\) do
            foreach list \({ }_{k}\) as \(p_{k}\) do
                dist \(=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\)
                        if dist \(\leq\) small then
                                \(t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)\)
for \(i \leftarrow 1\) to 10 do
        \(m=t q \cdot p o l l()\)
    \(p q . a d d(m)\);
```


addPutativeMatches Analysis

Complexity
$O\left(k d n^{1-1 / d}\right)$
$O(1)$
$O(k d)$
$O(1)$
$O(\log n)$

```
for \(i \leftarrow 2\) to \(k\) do
    \(\left\lfloor p_{i}=T_{i}\right.\).getnearest \(\left(p_{i-1}\right)\)
small \(=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\)
search \(=\) get search distance from small
\(t q=\) new PriorityQueue
\(t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)\)
for \(i \leftarrow 2\) to \(k\) do
    list \(_{i}=T_{i}\).getnearest \(\left(p_{i-1}\right.\), search \()\)
foreach list \(2_{2}\) as \(p_{2}\) do
        foreach list \({ }_{3}\) as \(p_{3}\) do
            foreach list \({ }_{k}\) as \(p_{k}\) do
                dist \(=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\)
                        if dist \(\leq\) small then
                                \(t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)\)
for \(i \leftarrow 1\) to 10 do
        \(m=t q \cdot p o l l()\)
    \(p q . a d d(m)\);
```


addPutativeMatches Analysis

Complexity
$O\left(k d n^{1-1 / d}\right)$
$O(1)$
$O(k d)$
$O(1)$
$O(\log n)$
$O(k)$

```
for \(i \leftarrow 2\) to \(k\) do
    \(L p_{i}=T_{i}\).getnearest \(\left(p_{i-1}\right)\)
small \(=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\)
search \(=\) get search distance from small
\(t q=\) new PriorityQueue
\(t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)\)
for \(i \leftarrow 2\) to \(k\) do
    \(L \quad\) list \(t_{i}=T_{i}\).getnearest \(\left(p_{i-1}\right.\), search \()\)
foreach list \(2_{2}\) as \(p_{2}\) do
        foreach list \({ }_{3}\) as \(p_{3}\) do
            foreach list \({ }_{k}\) as \(p_{k}\) do
                dist \(=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\)
                        if dist \(\leq\) small then
                                \(t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)\)
for \(i \leftarrow 1\) to 10 do
        \(m=t q \cdot p o l l()\)
    \(p q . a d d(m)\);
```


addPutativeMatches Analysis

Complexity	for $i \leftarrow 2$ to k do
$O\left(k d n^{1-1 / d}\right)$	- $p_{i}=T_{i}$.getnearest $\left(p_{i-1}\right)$
$O(1)$	small $=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)$
$O(k d)$	search $=$ get search distance from small
$O(1)$	$t q=$ new PriorityQueue
$O(\log n)$	$t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)$
$O(k)$	for $i \leftarrow 2$ to k do
$O\left(d n^{1-1 / d}\right)$	L list $_{i}=T_{i}$.getnearest $\left(p_{i-1}\right.$, search $)$
	```foreach list \({ }_{2}\) as \(p_{2}\) do foreach list \({ }_{3}\) as \(p_{3}\) do ... foreach list \(t_{k}\) as \(p_{k}\) do dist \(=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\) if dist \(\leq\) small then \(t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)\)```
	for $i \leftarrow 1$ to 10 do
	$\begin{aligned} & m=t q \cdot p o l l() \\ & p q \cdot \operatorname{add}(m) \end{aligned}$

## addPutativeMatches Analysis



## addPutativeMatches Analysis



## addPutativeMatches Analysis

Complexity	for $i \leftarrow 2$ to $k$ do
$O\left(k d n^{1-1 / d}\right)$	- $p_{i}=T_{i}$.getnearest $\left(p_{i-1}\right)$
$O(1)$	small $=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)$
$O(k d)$	search $=$ get search distance from small
$O(1)$	$t q=$ new PriorityQueue
$O(\log n)$	$t q \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)$
$O\left(k d n^{1-1 / d}\right)$	```for }i\leftarrow2\mp@code{to }k\mathrm{ do list}\mp@subsup{t}{i}{}=\mp@subsup{T}{i}{}\mathrm{ .getnearest( (pi-1, search)```
	foreach list ${ }_{2}$ as $p_{2}$ do foreach list ${ }_{3}$ as $p_{3}$ do ... foreach list ${ }_{k}$ as $p_{k}$ do
$\begin{aligned} & O\left(k d n^{k-1}\right) \\ & O\left(n^{k-1} \log n^{k-1}\right) \end{aligned}$	$\begin{aligned} & \text { dist }=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right) \\ & \text { if dist } \leq \operatorname{small} \text { then } \\ & \quad \operatorname{tq} \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right) \end{aligned}$
$O\left(10 \log n^{k-1}\right)$	$\begin{gathered} \text { for } i \leftarrow 1 \text { to } 10 \text { do } \\ m=t q \cdot p o l l() \\ p q \cdot \operatorname{add}(m) ; \end{gathered}$

## addPutativeMatches Analysis

Complexity	for $i \leftarrow 2$ to $k$ do
$O\left(k d n^{1-1 / d}\right)$	$p_{i}=T_{i}$. getnearest $\left(p_{i-1}\right)$
$O(1)$	small $=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right)$
$O(k d)$	search $=$ get search distance from small
$O(1)$	$t q=$ new PriorityQueue
$O(\log n)$	$t q . \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)$
$O\left(k d n^{1-1 / d}\right)$	```for \(i \leftarrow 2\) to \(k\) do list \(_{i}=T_{i}\).getnearest \(\left(p_{i-1}\right.\), search \()\)```
	foreach list ${ }_{2}$ as $p_{2}$ do foreach list ${ }_{3}$ as $p_{3}$ do \|... foreach list ${ }_{k}$ as $p_{k}$ do
$\begin{aligned} & O\left(k d n^{k-1}\right) \\ & O\left(n^{k-1} \log n^{k-1}\right) \end{aligned}$	$\begin{aligned} & \text { dist }=\operatorname{size}\left(p_{1}, p_{2}, \ldots, p_{k}\right) \\ & \text { if dist } \leq \operatorname{small} \text { then } \\ & \quad \operatorname{tq} \cdot \operatorname{add}\left(\operatorname{match}\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right) \end{aligned}$
$O\left(10 \log n^{k-1}\right)$	for $i \leftarrow 1$ to 10 do $m=t q$.poll() $p q \cdot \operatorname{add}(m)$;
$O\left(n^{k-1} \log n+k d\right.$	$\left.d n^{1-1 / d}\right)$

## kd-tree Algorithm Analysis

Complexity $O(n)$

```
\(G_{1}=\) read input
for \(i \leftarrow 2\) to \(k\) do
 \(G_{i}=\) read input
 \(T_{i}=\operatorname{makeKDTree}\left(G_{i}\right)\)
\(p q=\) new PriorityQueue
matches \(=\) new ArrayList
foreach \(p_{i} \in G_{1}\) do
 \(\operatorname{addPutativeMatches}\left(p_{i}, p q\right)\)
while \(p q\) not empty do
 \(m=p q . p o l l()\)
 if all points are unused then
 foreach \(i \leq k\) do
 \(T_{i}\). remove (m.i)
 matches.add \((m)\)
 else
 if point \(m .1 \in G_{1}\) is unused then
 if no more matches available then
 addPutativeMatches(m.1, pq)
```


## kd-tree Algorithm Analysis

Complexity $O(n)$ $O(k)$
$G_{1}=$ read input
for $i \leftarrow 2$ to $k$ do
$G_{i}=$ read input
$T_{i}=\operatorname{makeKDTree}\left(G_{i}\right)$
$p q=$ new PriorityQueue
matches $=$ new ArrayList
foreach $p_{i} \in G_{1}$ do

```
 addPutativeMatches(pi,pq)
```

while $p q$ not empty do

$$
m=p q \cdot \operatorname{poll}()
$$

if all points are unused then
foreach $i \leq k$ do
$T_{i}$. remove( $m . i$ )
matches.add $(m)$
else
if point $m .1 \in G_{1}$ is unused then
if no more matches available then
addPutativeMatches(m.1, pq)

## kd-tree Algorithm Analysis

Complexity
$O(n)$
$O(k)$
$O(n+n \log n)$
$G_{1}=$ read input
for $i \leftarrow 2$ to $k$ do
$G_{i}=$ read input
$T_{i}=\operatorname{makeKDTree}\left(G_{i}\right)$
$p q=$ new PriorityQueue
matches $=$ new ArrayList
foreach $p_{i} \in G_{1}$ do
addPutativeMatches $\left(p_{i}, p q\right)$
while $p q$ not empty do
$m=p q$.poll()
if all points are unused then
foreach $i \leq k$ do
$T_{i} \cdot$ remove $(m . i)$
matches.add $(m)$
else
if point $m .1 \in G_{1}$ is unused then
if no more matches available then
addPutativeMatches(m.1, pq)

## kd-tree Algorithm Analysis

Complexity $O(n)$
$O(k n \log n)$
$O(1)$
$O(1)$
$G_{1}=$ read input
for $i \leftarrow 2$ to $k$ do
$G_{i}=$ read input
$T_{i}=\operatorname{makeKDTree}\left(G_{i}\right)$
$p q=$ new PriorityQueue
matches $=$ new ArrayList
foreach $p_{i} \in G_{1}$ do
$\operatorname{addPutativeMatches}\left(p_{i}, p q\right)$
while $p q$ not empty do
$m=p q$.poll()
if all points are unused then
foreach $i \leq k$ do
$T_{i}$. remove(m.i)
matches.add $(m)$
else
if point $m .1 \in G_{1}$ is unused then
if no more matches available then
addPutativeMatches(m.1, pq)

## kd-tree Algorithm Analysis

Complexity $O(n)$
$O(k n \log n)$
$O$ (1)
$O(1)$
$O(n)$
$G_{1}=$ read input
for $i \leftarrow 2$ to $k$ do
$G_{i}=$ read input
$T_{i}=\operatorname{makeKDTree}\left(G_{i}\right)$
$p q=$ new PriorityQueue
matches $=$ new ArrayList
foreach $p_{i} \in G_{1}$ do addPutativeMatches( $p_{i}, p q$ )
while pq not empty do
$m=p q$.poll()
if all points are unused then
foreach $i \leq k$ do
$T_{i}$.remove(m.i)
matches.add ( $m$ )
else
if point $m .1 \in G_{1}$ is unused then
if no more matches available then
addPutativeMatches(m.1, pq)

## kd-tree Algorithm Analysis

Complexity $O(n)$
$O(k n \log n)$
$O(1)$
$O(1)$
$O(n)$ $O\left(n^{k-1} \log n\right)$
$G_{1}=$ read input
for $i \leftarrow 2$ to $k$ do
$G_{i}=$ read input
$T_{i}=\operatorname{makeKDTree}\left(G_{i}\right)$
$p q=$ new PriorityQueue
matches $=$ new ArrayList
foreach $p_{i} \in G_{1}$ do
addPutativeMatches $\left(p_{i}, p q\right)$
while $p q$ not empty do
$m=p q$.poll()
if all points are unused then
foreach $i \leq k$ do
$T_{i} \cdot$ remove $(m . i)$
matches.add $(m)$
else
if point $m .1 \in G_{1}$ is unused then
if no more matches available then
addPutativeMatches(m.1, pq)

## kd-tree Algorithm Analysis

$\begin{aligned} & \text { Complexity } \\ & O(n) \end{aligned}$	$\begin{aligned} & G_{1}=\text { read input } \\ & \text { for } i \leftarrow 2 \text { to } k \text { do } \end{aligned}$
$O(k n \log n)$	
$\begin{aligned} & O(1) \\ & O(1) \end{aligned}$	$p q=$ new PriorityQueue matches $=$ new ArrayList
$O\left(n^{k} \log n\right)$	$\begin{aligned} & \text { foreach } p_{i} \in G_{1} \text { do } \\ & L \quad \text { addPutativeMatches }\left(p_{i}, p q\right) \end{aligned}$
$O\left(n^{k}\right)$	while pq not empty do ```\(m=p q\).poll() if all points are unused then foreach \(i \leq k\) do \(T_{i}\).remove( \(m . i\) ) matches.add( \(m\) ) else```
	if point m. $1 \in G_{1}$ is unused then if no more matches available then addPutativeMatches(m.1, pq)

## kd-tree Algorithm Analysis

Complexity $O(n)$
$O(k n \log n)$
$O(1)$
$O(1)$
$O\left(n^{k} \log n\right)$
$O\left(n^{k}\right)$ $O(\log n)$
$G_{1}=$ read input
for $i \leftarrow 2$ to $k$ do
$G_{i}=$ read input
$T_{i}=\operatorname{makeKDTree}\left(G_{i}\right)$
$p q=$ new PriorityQueue
matches $=$ new ArrayList
foreach $p_{i} \in G_{1}$ do addPutativeMatches $\left(p_{i}, p q\right)$
while $p q$ not empty do

```
 m=pq.poll()
 if all points are unused then
 foreach i\leqk do
 T},\mathrm{ .remove(m.i)
 matches.add(m)
 else
 if point m.1\in G1 is unused then
 if no more matches available then
 addPutativeMatches(m.1, pq)
```


## kd-tree Algorithm Analysis

Complexity
$O(n)$
$O(k n \log n)$
$O(1)$
$O(1)$
$O\left(n^{k} \log n\right)$
$O\left(n^{k} \log n\right)$
$O(n(k \log n+\log n))$
$G_{1}=$ read input
for $i \leftarrow 2$ to $k$ do
$G_{i}=$ read input
$T_{i}=\operatorname{makeKDTree}\left(G_{i}\right)$
$p q=$ new PriorityQueue
matches $=$ new ArrayList
foreach $p_{i} \in G_{1}$ do
addPutativeMatches $\left(p_{i}, p q\right)$
while $p q$ not empty do

$$
m=p q \cdot \operatorname{poll}()
$$

if all points are unused then
foreach $i \leq k$ do
$T_{i}$.remove( $m . i$ )
matches.add $(m)$
else
if point $m .1 \in G_{1}$ is unused then
if no more matches available then
addPutativeMatches(m.1, pq)

## kd-tree Algorithm Analysis

Complexity
$O(n)$
$O(k n \log n)$
$O(1)$
$O(1)$
$O\left(n^{k} \log n\right)$
$O\left(n^{k} \log n\right)$
$O(n(k \log n+\log n))$
$O\left(n^{k}-n\right)$
$G_{1}=$ read input
for $i \leftarrow 2$ to $k$ do
$G_{i}=$ read input
$T_{i}=\operatorname{makeKDTree}\left(G_{i}\right)$
$p q=$ new PriorityQueue
matches $=$ new ArrayList
foreach $p_{i} \in G_{1}$ do
addPutativeMatches $\left(p_{i}, p q\right)$
while $p q$ not empty do

$$
m=p q \cdot p o l l()
$$

if all points are unused then
foreach $i \leq k$ do
$T_{i}$. remove $(m . i)$
matches.add $(m)$
else
if point $m .1 \in G_{1}$ is unused then
if no more matches available then
addPutativeMatches(m.1, pq)

## kd-tree Algorithm Analysis

Complexity $O(n)$	$\begin{aligned} & G_{1}=\text { read input } \\ & \text { for } i \leftarrow 2 \text { to } k \text { do } \end{aligned}$
$O(k n \log n)$	$\begin{aligned} & G_{i}=\text { read input } \\ & T_{i}=\operatorname{makeKDTree}\left(G_{i}\right) \end{aligned}$
$O(1)$	
$O(1)$	matches $=$ new ArrayList
$O\left(n^{k} \log n\right)$	$\begin{aligned} & \text { foreach } p_{i} \in G_{1} \text { do } \\ & \quad \text { addPutativeMatches }\left(p_{i}, p q\right) \end{aligned}$
$O\left(n^{k} \log n\right)$	while pq not empty do $m=p q \cdot \text { poll() }$   if all points are unused then foreach $i \leq k$ do
$O(n(k \log n+\log n))$	L $T_{i}$.remove(m.i)
$O\left(n^{k}-n\right)$	$\prod_{\text {else }} \text { matches.add }(m)$
$O\left(n^{k-1} \log n\right)$	if point m. $1 \in G_{1}$ is unused then if no more matches available then addPutativeMatches(m.1, pq)

## kd-tree Algorithm Analysis



## Measuring Matches: Convex Hull



- Avoids TSP encountered with perimeter
- $\Omega\left(n^{[d / 2\rfloor}\right)$ for $d>3$


## kd-tree Data Structure

kd-trees

- Multi-dimensional data structure introduced by Bentley (1975)
- Based on binary search trees
- Each level $i$ divides the search space in dimension $i \bmod d$


## kd-tree Data Structure

Insert

- Search for node in the tree, if not found, add node
- Average cost: $O(\log n) \approx 1.386 \log _{2} n$ (by Knuth)
- Can use Insert to build kd-tree
- Inserting random nodes to build kd-tree is statistically similar to building bst
- Build cost: $O(n \log n)$ for sufficiently random nodes

Optimize

- Given all $n$ nodes, build an optimal kd-tree
- Uses the median for each dimension as discriminator for that level
- $O(n \log n)$ running time
- Maximum path length: $\left\lfloor\log _{2} n\right\rfloor$


## kd-tree Data Structure

## Delete

- Must replace node with $j$-max element of left tree or $j$-min element of right tree
- Worst Case Cost: $O\left(n^{1-1 / d}\right)$, dominated by find $\min / m a x$
- Average Delete Cost: $O(\log n)$

Nearest Neighbor Queries

- Bentley's Original algorithm: empirically $O(\log n)$ (redacted)
- Friedman and Bentley: empirically $O\left(\log _{2} n\right)$
- Lee and Wong ('80): Worst case: $O\left(n^{1-1 / k}\right)$


## Proof of Correctness: Centroid

We want to find $r$ such that given $m$ with $k$ points,

$$
s=\max \left(\sum_{l=1}^{d}\left(p_{l}-c_{l}(m)\right)^{2}\right), \forall p \in m,
$$

where $s$ is the maximum Euclidean distance to centroid.

- First, consider $\operatorname{size}(m) \leq k s^{2}$. Remember,

$$
\operatorname{size}(m)=\sum_{i=1}^{k}\left(\sum_{j=1}^{d}\left(p_{i, j}-c_{j}(m)\right)^{2}\right)^{2}
$$

Since $\sum_{j=1}^{d}\left(p_{i, j}-c_{j}(m)\right)^{2} \leq s$ for all $i$, this is trivially true.

## Proof of Correctness: Centroid

- Second, there exists $p_{j}$ outside of $r$, with $p_{j}, p_{i} \in m^{\prime}$. Let $x$ and $y$ be the distance from $p_{i}$ and $p_{j}$ to $c\left(m^{\prime}\right)$, respectively. By assumption, $x+y \geq r$. Since $\operatorname{size}(m) \leq k s^{2}$, we show

$$
\operatorname{size}(m) \leq k s^{2} \leq x^{2}+y^{2} \leq \operatorname{size}\left(m^{\prime}\right)
$$

With minimal $x+y, x+y=r$. Then we know

$$
\frac{r^{2}}{2} \leq x^{2}+y^{2} \leq r^{2}
$$

Therefore

$$
\begin{aligned}
k s^{2} & \leq \frac{r^{2}}{2} \\
k s^{2} & \leq \frac{k^{2} s^{2}}{2} \\
2 & \leq k .
\end{aligned}
$$

## Centroid Measures

Visible differences between max, average (variance), and sum of squared distances to the centroid.


## Centroid Measures

Equivalent matches under each measure to the centroid.
(f) Max distance (g) Average distance

## kd-tree Empirical Performance



