IVIOTIVATION
11100110010

Formal Definition 00000 0000000000000000000000 Current Approaches

kd-tree Algorithr 0 000 Algorithm Analy 000 00 Conclusions

KD-Tree Algorithm for Propensity Score Matching PhD Qualifying Exam Defense

John R Hott

University of Virginia

May 11, 2012

Formal Definition 00000 0000000000000000000000 Current Approaches

kd-tree Algorithm 0 000 Algorithm Analys

Conclusions

Motivation

- Epidemiology: Clinical Trials
 - Phase II and III pre-market trials
 - After-market Phase IV trials against 3+ treatments
- Trials requiring similar groups to avoid confounding
 - Participants with similar comorbidities (diseases, ...)
 - Participants with similar traits (age, weight, height, ...)
- Propensity Scores
 - Probability, given certain factors, that a person will be given a certain treatment
 - Want to match participants with similar propensity scores

ormal Definition

Current Approaches

kd-tree Algorithm 0 000 Algorithm Analy

ormal Definition

Current Approaches

kd-tree Algorithm 0 000 Algorithm Analy

ormal Definition

Current Approaches

kd-tree Algorithm 0 000 Algorithm Analys

ormal Definition

Current Approaches

kd-tree Algorithm 0 000 Algorithm Analys

ormal Definition

Current Approaches

kd-tree Algorithm 0 000 Algorithm Analys

Tylenol

Algorithm Analysis

Conclusions

Why doesn't this nearest neighbor approach work for more groups?

- b_1 and g closest points to r
- Triangle rgb_2 has smaller perimeter than rgb_1

Current Approaches

kd-tree Algorithm 0 000 Algorithm Analys

Conclusions

Current Approaches

For two treatment groups

- Propensity scores used to reduce dimensionality
- Brute force or nearest neighbor searches

For more than two groups

- Brute force
 - Requires $O(n^k \log n)$ time using $O(n^k)$ space
 - Less efficient brute force uses O(n) space, but $O(n^{k+1})$ time
 - Problem: must consider all matches
 - Not feasible for large *n*

kd-tree algorithm, under a uniform distribution, will perform in $O(kdn^2)$ time and O(n) space.

Formal Definition

Current Approaches

kd-tree Algorith 0 000 Algorithm Analys

Conclusions

The End: Spoilers

Figure: Results in 3-dimensions with 3 groups

For 1000 participants in 3 groups with 3 dimensions

- Brute Force: 19.6 hours
- kd-tree Algorithm: 3.6 seconds (19,427x speedup)

Formal Definition

Current Approaches

kd-tree Algorithm 0 000 Algorithm Ana 000 00 Conclusions

Problem Statement

Informally, we want to make the smallest n disjoint matches with one participant from each of k groups per match.

- Start with participants in one group,
- Find their closest matched participants of each other group (nearest neighbor),
- Search within a small neighborhood of these points for a smaller match, if one exists,
- Repeat, if necessary.

Formal Definition

Current Approaches

kd-tree Algorithm 0 000 Algorithm Analys

Conclusions

Outline

Motivatior

- Formal Definition
- Definitions
- Size Function
- Current Approaches
- 🕕 kd-tree Algorithm
 - kd-trees
 - Algorithm Description
- Algorithm Analysis
 - Worst Case
 - Expected Case
 - Empirical Study

Current Approaches

kd-tree Algorithr 0 000 Algorithm Ana

Conclusions

Participant Definitions

Definition (Participant)

Let the point $p \in \mathbb{R}^d$ be a participant normalized over d defining characteristics

Current Approaches

kd-tree Algorithn 0 000 Algorithm Ana 000 00 Conclusions

Participant Definitions

Definition (Participant)

Let the point $p \in \mathbb{R}^d$ be a participant normalized over d defining characteristics

Definition (Set of all Participants)

The set $\mathcal{P} \subseteq \mathbb{R}^d$, is the set of all participants, such that:

• $\mathcal{P} = \bigcup_{i=1}^{k} G_i$, where each G_i defines a treatment group

•
$$|G_i| = n$$

•
$$|\mathcal{P}| = \sum_i |G_i| = kn.$$

Formal Definition

Current Approaches

kd-tree Algorithm 0 000 Algorithm Ana 000 00 Conclusions

Match Definitions

Definition (Match)

A set $m \subseteq \mathcal{P}$ is a **match** if it contains exactly one point from each G_i :

- |m| = k,
- $|m \cap G_i| = 1, \forall i$.

Formal Definition

Current Approaches

kd-tree Algorithm 0 000 Algorithm Ar 000 00 Conclusions

Match Definitions

Definition (Match)

A set $m \subseteq \mathcal{P}$ is a **match** if it contains exactly one point from each G_i :

- |m| = k,
- $|m \cap G_i| = 1, \forall i$.

Definition (Set of all Matches)

Let $\mathcal{M} = \{m : m \text{ is a match}\}$ be the set of all matches with

 $|\mathcal{M}| = \prod_i |G_i| = n^k$

Formal Definition

Current Approaches

kd-tree Algorithm 0 000 Algorithm Analys

Conclusions

Size of a Match

Definition

Match measure function size(m),

 $\textit{size}: \mathcal{M} \rightarrow \mathbb{R},$

independent of the order of the points in the match m, must give a consistent measurement of the match.

Ideal measure: minimize the sum of the distance between all points

- Fully connected graph
- Quadratic on k

Formal Definition

Current Approaches

kd-tree Algorith 0 000 Algorithm Analys

Conclusions

Match Covering

Definition

M is a match covering of \mathcal{P} if *M* is a set of disjoint matches:

- $M \subset \mathcal{M}$
- |M| = n
- $\forall m, l \in M$ where $m \neq l$ then $m \cap l = \emptyset$.

Formal Definition

Current Approaches

kd-tree Algorith 0 000 Algorithm Analys

Conclusions

Match Covering

Definition

M is a match covering of \mathcal{P} if *M* is a set of disjoint matches:

- $M \subset \mathcal{M}$
- |M| = n
- $\forall m, l \in M$ where $m \neq l$ then $m \cap l = \emptyset$.

Definition

WLOG, assume M is sorted on size(m): $\forall m_i, m_j \in M, i < j \implies size(m_i) < size(m_j)$. Define ordering $<_M$ such that $M_0 <_M M_1$ if for some index i,

$$\textit{size}(m_{0,i}) < \textit{size}(m_{1,i}) \textit{ and } \forall j < i, \textit{size}(m_{0,j}) = \textit{size}(m_{1,j})$$

Size of match in M_0 less than size of match in M_1 at the first place they differ

Formal Definition

Current Approaches

kd-tree Algorithm 0 000 Algorithm Analys

Conclusions

Problem Statement

Find the minimal match covering, M_0 , such that

 $\forall i, M_0 \leq_M M_i.$

Formal Definition

Current Approaches

kd-tree Algorithn 0 000 Algorithm Analy 000 00 Conclusions

Match size function

What is the best method for measuring the size of a match? Perimeter? Convex Hull? Something else?

Formal Definition

urrent Approaches

kd-tree Algorith 0 000 Algorithm / 000 00 alysis

Conclusions

Measuring Matches: by example

Formal Definition

Current Approaches

kd-tree Algorithr 0 000 Algorithm Ana

Conclusions

Measuring Matches: Area

- All colinear points have 0 area, regardless of distance
- Favors colinear points

Formal Definition

urrent Approaches

kd-tree Algorith 0 000 Algorithm Ana

Conclusions

Measuring Matches: Perimeter

- Works for 2-dimensions, 3-colors
- Equivalent to Traveling Salesman as number of colors increases
- Not well defined in more dimensions

Formal Definition

Current Approaches

kd-tree Algorith 0 000 Algorithm Analy

Conclusions

Measuring Matches: Convex Hull

- Avoids TSP encountered with perimeter
- $\Omega(n^{\lfloor d/2 \rfloor})$ for d > 3

more

Current Approaches

kd-tree Algorith 0 000 Algo 000

lgorithm Analysis 00 Conclusions

Measuring Matches: Centroid

- Linearly computable (on colors and dimensions)
- Statistical sense: distance to an average point
- Matches are intuitively small
- Possible Measurements
 - Max distance to centroid
 - Average distance to centroid (variance)
 - Sum of squared distances to centroid

more

Formal Definition

Current Approaches

kd-tree Algorithn 0 000 Algorithm Ana 000 00 Conclusions

Perimeter Measure

For 3 or fewer groups, perimeter matches our ideal measurement. In this case,

size(m) = perimeter(m).

This definition leads to a search radius of

$$search(m) = rac{1}{2}size(m)$$

Formal Definition

Current Approaches

kd-tree Algorithi o ooo Algorithm And 000 00 Conclusions

Proof of Correctness: Perimeter

Theorem

Given an initial match m containing point $p_i \in G_1$, which contains random points p_{r_j} , one per G_j with $j \ge 2$, the perimeter will define the size of the match. Let us assume that $size(m) = q \in \mathbb{R}$. Our search radius will then be the disc centered at p_i with radius $\frac{q}{2}$. This area will contain the smallest match for p_i .

Formal Definition

urrent Approaches

kd-tree Algorithm 0 000 Algorithm A 000 00 Conclusions

Proof of Correctness: Perimeter

Formal Definition

urrent Approaches

kd-tree Algorithm 0 000 Algorithm A 000 00 Conclusions

Proof of Correctness: Perimeter

Formal Definition

urrent Approaches

kd-tree Algorithn 0 000 Algorithm A 000 00 Conclusions

Proof of Correctness: Perimeter

Formal Definition

Current Approaches

kd-tree Algorithi 0 000 Algorithm Ana 000 00 Conclusions

Centroid Measure

For a d-dimensional space and k colors per match, we consider the sum of squared distances to the centroid.

The centroid of a match m is defined as

$$c(m) = rac{1}{k}\sum_{i=1}^{k}p_i.$$

Our size(m) function, using sum of squared distances to the centroid, is defined as

$$\mathit{size}(\mathit{m}) = \sum_{i=1}^k \left(\sum_{j=1}^d \left(\mathit{p}_{i,j} - \mathit{c}_j(\mathit{m})
ight)^2
ight)^2.$$

This definition leads to a search radius of

search(m) = k * max distance to centroid.
Formal Definition

Current Approaches

kd-tree Algorith 0 000 Algorithm Ana 000 00 Conclusions

Proof of Correctness: Centroid

Theorem

Given an initial match *m* containing point $p_i \in G_1$, which contains random points p_{r_j} , one per G_j with $j \ge 2$, the sum of squared distances to the centroid will define the size of the match. Our search radius will be the disc centered at p_i with radius k * s where s is the max distance to centroid. This area will contain the smallest match for p_i .

ormal Definition

urrent Approaches

kd-tree Algorith 0 000

ithm

Algorithm Analys 000 00 Conclusions

Proof of Correctness: Centroid

ormal Definition

urrent Approaches

kd-tree Algorith 0 000 n

Algorithm Analysi

Conclusions

Proof of Correctness: Centroid

rmal Definition

Current Approaches

kd-tree Algorith 0 000 A

Algorithm Analysi

Conclusions

Proof of Correctness: Centroid

more

Formal Definition

Current Approaches

kd-tree Algorithm 0 000 Algorithm Anal 000 00 Conclusions

Outline

Motivation

- Definitions
- Size Function

Current Approaches

- 🕨 kd-tree Algorithm
 - kd-trees
 - Algorithm Description
- Algorithm Analysis
 - Worst Case
 - Expected Case
 - Empirical Study

Formal Definition 00000 0000000000000000000000 Current Approaches

kd-tree Algorithm 0 000 Algorithm Analy 000 00 Conclusions

Brute Force Approaches

Algorithm 2: $O(n^k \log n)$ time, but $O(n^k)$ space.

Input: k sets of n points **Output**: set of n ordered smallest matches of k points each

```
read input

foreach p_1 \in G_1 do

foreach p_2 \in G_2 do

foreach <math>p_k \in G_k do

M \leftarrow m = \{p_1, p_2, ..., p_k\}

sort(M)

foreach M do

if p_1, p_2, ..., p_k clean then

M_{ans} \leftarrow m

return M_{ans}
```

ormal Definition

Current Approaches

kd-tree Algorithr 0 000 Algorithm Analy

Conclusions

Brute Force Approaches

Algorithm 1: O(n) space, but $O(n^{k+1})$ time.

Input: k sets of n points **Output**: set of n ordered smallest matches of k points each

```
read input

for i = 1 : n do

smallest = MAX

m_{smallest} = null

foreach p_1 \in G_1 do

foreach p_2 \in G_2 do

\dots.foreach p_k \in G_k do

if size(m = \{p_1, p_2, ..., p_k\}) < smallest then

m_{smallest} = m

smallest = size(m)

M_{ans} \leftarrow m_{smallest}

return M_{ans}
```

ormal Definition

Current Approaches

kd-tree Algorith 0 000 Algorithm Ana 000 00 Conclusions

Voronoi Matching Algorithm

Figure: Voronoi Cells.

Formal Definition 00000 00000000000000000000000 Current Approaches

kd-tree Algorith 0 000 Algorithm Analy 000 00 Conclusions

Voronoi Matching Algorithm

Problems with the Voronoi algorithm

- Provides only an approximation for M_0
- Worst and expected case complexity $O(n^4)$ for 3 groups
- Required searching for points in polygons

Formal Definition

Current Approaches

kd-tree Algorithn 0 000 Algorithm Analy 000 00 Conclusions

Outline

Motivation

- Definitions
- Size Function

Current Approaches

kd-tree Algorithm

- kd-trees
- Algorithm Description

Algorithm Analysis

- Worst Case
- Expected Case
- Empirical Study

Conclusions

Wotivation	10.0			
		E 1 V /		
		urv		

Formal Definition

Current Approaches

kd-tree Algorith ● ○○○ Algorithm Ar 000 Conclusions

kd-trees

Binary tree data structure used to store points in *d*-dimensional space.

more

Formal Definition

Current Approaches

kd-tree Algorithm ○ ●○○ Algorithm Analys

Conclusions

kd-tree Algorithm

Input: k sets of n points **Output**: set of n ordered smallest matches of k points each

```
G_1 = \text{read input}
for i \leftarrow 2 to k do
     G_i = read input
     T_i = makeKDTree(G_i)
pq = new PriorityQueue
matches = new ArrayList
foreach p_i \in G_1 do
     addPutativeMatches(p_i, pq)
while pg not empty do
     m = pq.poll()
     if all points are unused then
          foreach i < k do
                T_i.remove(m.i)
          matches.add(m)
     else
          if point m.1 \in G_1 is unused then
               if no more matches available then
                     addPutativeMatches(m.1, pq)
```

mal Definition

Current Approaches

kd-tree Algorithn ○ ○●○ Algorithm 000 00 Conclusio

addPutativeMatches Subroutine

Input: PriorityQueue pq, current point p_1 from G_1 , kd-trees T_i for each G_2 to G_k **Output**: list of 10 smallest matches for point p_1

```
for i \leftarrow 2 to k do
       p_i = T_i.getnearest(p_{i-1})
small = size(p_1, p_2, \dots, p_k)
search = get search distance from small
tq = new PriorityQueue
tq.add(match(p_1, p_2, \dots, p_k))
for i \leftarrow 2 to k do
       list_i = T_i.getnearest(p_{i-1}, search)
foreach list<sub>2</sub> as p<sub>2</sub> do
       foreach list<sub>3</sub> as p<sub>3</sub> do
               ... foreach list_k as p_k do
                  \begin{vmatrix} dist = size(p_1, p_2, \dots, p_k) \\ if dist \le small then \\ tq.add(match(p_1, p_2, \dots, p_k)) \end{vmatrix}
for i \leftarrow 1 to 10 do
       \underline{m} = tq.poll()
       pq.add(m);
```

Formal Definition

urrent Approaches

kd-tree Algorithm ○ ○○● Algorithm Ar 000 00 Conclusion

Empirical Study: addPutativeMatches returns

Figure: Empirical study varying number of matches returned by addPutativeMatches.

Formal Definition

Current Approaches

kd-tree Algorithr 0 000 Algorithm Anal

Conclusions

Outline

Motivation

- Definitions
- Size Function
- Current Approaches
- 🕕 kd-tree Algorithm
 - kd-trees
 - Algorithm Description

Algorithm Analysis

- Worst Case
- Expected Case
- Empirical Study

Conclusions

mal Definition

Current Approaches

kd-tree Algorith 0 000 Algorithm Analy

Conclusions

addPutativeMatches Worst Case

Complexity

	for $i \leftarrow 2$ to k do
$O(kdn^{1-1/d})$	$[p_i = T_i.getnearest(p_{i-1})$
<i>O</i> (1)	$small = size(p_1, p_2, \dots, p_k)$
<i>O</i> (<i>kd</i>)	search = get search distance from small
<i>O</i> (1)	tq = new PriorityQueue
$O(\log n)$	$tq.add(match(p_1,p_2, \dots, p_k))$
$\alpha(1,1,1/d)$	for $i \leftarrow 2$ to k do
$O(kdn^{1-1/a})$	\lfloor list _i = T_i .getnearest(p_{i-1} , search)
	foreach list ₂ as p ₂ do
	foreach list ₃ as p_3 do
	\dots foreach list _k as p_k do
$O(kdn^{k-1})$	$dist = size(p_1, p_2, \dots, p_k)$
$O(n^{\kappa-1}\log n^{\kappa-1})$	$ if dist \leq small then$
$O(10 \log n^{k-1})$	
	for $i \leftarrow 1$ to 10 do
	m = tq.poll()
	pq.add(m);

more

kd-tree Algorithm Worst Case

Complexity O(n)	$G_1 = $ read input
$O(kn \log n)$	for $i \leftarrow 2$ to k do $\begin{bmatrix} G_i = \text{read input} \\ T_i = \text{makeKDTree}(G_i) \end{bmatrix}$
O(1) O(1)	pq = new PriorityQueue matches = new ArrayList
$O(n^k \log n)$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$O(n^k \log n)$	<pre>while pq not empty do m = pq.poll() if all points are unused then</pre>
$O(nk \log n)$ $O(n \log n)$	$\begin{bmatrix} \text{foreach } i \leq k \text{ do} \\ \\ T_i.\text{remove}(m.i) \\ matches.add(m) \end{bmatrix}$
	else
$O(n^{2k-1}\log n)$	if point $m.1 \in G_1$ is unused thenif no more matches available thenaddPutativeMatches($m.1, pq$)

Expected Case Assumption

For *n* points, $\exists \delta$ such that $\forall \varepsilon$ -sized areas, there are less than $\delta \varepsilon n$ points in that region.

- This assumes a uniform distribution, per study design
- Location of the $\varepsilon\text{-sized}$ area is irrelevant
- As the density increases, the search radius becomes smaller
- For a small area arepsilon pprox 1/n, number of points appears constant in that area (δ)
 - Since we look at the k closest neighbors to a point

Formal Definition 00000 0000000000000000000000 Current Approaches

kd-tree Algorithm 0 000 Algorithm Analys

Conclusions

Expected Case

$$T_{apm_{k,d}} = O(2(k-1)dn^{1-\frac{1}{d}} + \log n) = O(kdn)$$

$$T_{part_{k,d}} = O(nT_{apm_{k,d}}) = O(kdn^2)$$

$$T_{part_{k,d}} = O(n\log n + nk\log n) = O((k+1)n\log n)$$

with the total time complexity reducing to

$$egin{array}{rcl} T_{kdtree}&=&T_{build_{kds}}+T_{part1_{k,d}}+T_{part2_{k,d}}\ &=&O\left((k-1)(n\log n)+kdn^2+(k+1)n\log n
ight)\ &=&O(kdn^2). \end{array}$$

Current Approaches

kd-tree Algorith 0 000 Algorithm A

Conclusions

Empirical Study: Brute Force vs KD-Tree

Parameter	Values
Number of Treatment Groups	3 - 4
Participants per Treatment Group	50, 100, 200, 300, 400, 500, 750, 1000
Confounding Factors per Participant	3

Table: Empirical test configurations.

Each configuration repeated 50 times. Centurion cluster nodes

- 1.6 GHz dual-core Opteron
- 3GB RAM

Empirical Study: Brute Force vs KD-Tree

Figure: Results in 3-dimensions with 3 groups (log-scale x-axis)

ormal Definition

Current Approaches

kd-tree Algorith 0 000

thm

gorithm Analysis

ŏŏe

Conclusions

Empirical Study: Brute Force vs KD-Tree

Figure: Empirical study comparing brute force and the kd-tree algorithm. (log-scale x-axis)

Formal Definition

Current Approaches

kd-tree Algorithn 0 000 Algorithm Analysi

Conclusions

Outline

Motivation

- Definitions
- Size Function
- Current Approaches
- 🕕 kd-tree Algorithm
 - kd-trees
 - Algorithm Description
- Algorithm Analysis
 - Worst Case
 - Expected Case
 - Empirical Study

Conclusions

Current Approaches

kd-tree Algorithn 0 000 Algorithm Analy

Conclusions

Future Directions

- Alternative applications for the algorithm
- Combining kd-trees and voronoi cells
 - Some research into using voronoi cells to speed kd-tree lookups
 - Utilize kd-trees to build effective voronoi diagrams (completed)
 - Extracting matches using the effective voronoi diagrams before completion using the kd-tree algorithm
- Other assumptions for expected cases
 - Alternate distributions
 - Slowly growing δ in our expected assumption
- Other match measure functions
- Reduce the search area once a smaller match is found

Formal Definition 00000 0000000000000000000000 Current Approaches

kd-tree Algorithr 0 000 Algorithm Anal

Conclusions

Research Plan

Proposed research directions:

- $\sqrt{}$ Generalize the kd-tree algorithm to an arbitrary k colors in d dimensions, as defined in the problem statement,
- \surd Analyze the time complexity of the k-d tree algorithm for both worst-case and expected case running times,
- $\sqrt{}$ Examine other methods for defining the size of a match that are not dependent or limited by dimensionality, number of colors, or ordering of the points,
- $\sqrt{}$ Prove algorithm correctness.

Additional research directions:

- \checkmark Perform an empirical study of addPutativeMatches return values,
- \surd Perform an empirical study comparing brute force to the kd-tree algorithm for 3-5 groups in 3-4 dimensions.

Questions?

Complexity

for $i \leftarrow 2$ to k do $| p_i = T_i$.getnearest (p_{i-1}) $small = size(p_1, p_2, \dots, p_k)$ search = get search distance from smalltq = new PriorityQueue $tq.add(match(p_1, p_2, \dots, p_k))$ for $i \leftarrow 2$ to k do $list_i = T_i$.getnearest $(p_{i-1}, search)$ foreach list₂ as p₂ do foreach list₃ as p₃ do ... foreach $list_k$ as p_k do for $i \leftarrow 1$ to 10 do m = tq.poll()pq.add(m);

Complexity O(k)

```
for i \leftarrow 2 to k do
 | p_i = T_i.getnearest(p_{i-1})
small = size(p_1, p_2, \dots, p_k)
search = get search distance from small
tq = new PriorityQueue
tq.add(match(p_1, p_2, \dots, p_k))
for i \leftarrow 2 to k do
     list_i = T_i.getnearest(p_{i-1}, search)
foreach list<sub>2</sub> as p<sub>2</sub> do
     foreach list<sub>3</sub> as p<sub>3</sub> do
           ... foreach list_k as p_k do
        for i \leftarrow 1 to 10 do
     m = tq.poll()
     pq.add(m);
```

```
Complexity
                                for i \leftarrow 2 to k do
O(k)
                                  | p_i = T_i.getnearest(p_{i-1})
 O(dn^{1-1}/d)
                                small = size(p_1, p_2, \dots, p_k)
                                search = get search distance from small
                                tq = new PriorityQueue
                                 tq.add(match(p_1, p_2, \dots, p_k))
                                for i \leftarrow 2 to k do
                                      list_i = T_i.getnearest(p_{i-1}, search)
                                foreach list<sub>2</sub> as p<sub>2</sub> do
                                      foreach list<sub>3</sub> as p<sub>3</sub> do
                                           ... foreach list_k as p_k do
                                            for i \leftarrow 1 to 10 do
                                      m = tq.poll()
                                      pq.add(m);
```

Complexity

 $O(kdn^{1-1/d})$ O(1) O(kd) O(1) O(1) $O(\log n)$

Complexity

 $O(kdn^{1-1/d})$ O(1) O(kd) O(1) $O(\log n)$ O(k)

Complexity

 $\begin{array}{c} O(kdn^{1-1/d}) \\ O(1) \\ O(kd) \\ O(1) \\ O(\log n) \\ O(k) \\ O(dn^{1-1/d}) \end{array}$

Complexity

```
for i \leftarrow 2 to k do
                                       | p_i = T_i.getnearest(p_{i-1})
O(kdn^{1-1/d})
O(1)
                                      small = size(p_1, p_2, \dots, p_k)
O(kd)
                                      search = get search distance from small
O(1)
                                      tq = new PriorityQueue
O(\log n)
                                      tq.add(match(p_1, p_2, \dots, p_k))
                                      for i \leftarrow 2 to k do
O(kdn^{1-1/d})
                                            list_i = T_i.getnearest(p_{i-1}, search)
O(n) \times
                                      foreach list<sub>2</sub> as p<sub>2</sub> do
O(n) \times
                                            foreach list<sub>3</sub> as p<sub>3</sub> do
\times ... \times O(n)
                                                   ... foreach list_k as p_k do
                                                      dist = size(p_1, p_2, \dots, p_k)
if dist \le small then
                                                           tq.add(match(p_1,p_2,\ldots,p_k))
                                      for i \leftarrow 1 to 10 do
                                            m = tq.poll()
                                            pq.add(m);
```

Complexity

```
for i \leftarrow 2 to k do
                                        p_i = T_i.getnearest(p_{i-1})
O(kdn^{1-1/d})
O(1)
                                      small = size(p_1, p_2, \dots, p_k)
O(kd)
                                      search = get search distance from small
O(1)
                                      tq = new PriorityQueue
O(\log n)
                                      tq.add(match(p_1, p_2, \dots, p_k))
                                      for i \leftarrow 2 to k do
O(kdn^{1-1/d})
                                             list_i = T_i.getnearest(p_{i-1}, search)
O(n) \times
                                      foreach list<sub>2</sub> as p<sub>2</sub> do
O(n) \times
                                            foreach list<sub>3</sub> as p<sub>3</sub> do
\times ... \times O(n)
                                                   ... foreach list_k as p_k do
                                                         dist = size(p_1, p_2, ..., p_k)
if dist \leq small then
 O(kd)
 O(\log n^{k-1})
                                                                tq.add(match(p_1, p_2, \dots, p_k))
                                      for i \leftarrow 1 to 10 do
                                             m = tq.poll()
                                             pq.add(m);
```

Complexity

for $i \leftarrow 2$ to k do $| p_i = T_i$.getnearest (p_{i-1}) $O(kdn^{1-1/d})$ O(1) $small = size(p_1, p_2, \dots, p_k)$ O(kd)search = get search distance from smallO(1)tq = new PriorityQueue $O(\log n)$ $tq.add(match(p_1, p_2, \dots, p_k))$ for $i \leftarrow 2$ to k do $O(kdn^{1-1/d})$ $list_i = T_i$.getnearest $(p_{i-1}, search)$ foreach list₂ as p₂ do foreach list₃ as p₃ do ... foreach $list_k$ as p_k do $dist = size(p_1, p_2, ..., p_k)$ if $dist \leq small$ then $O(kdn^{k-1})$ $O(n^{k-1}\log n^{k-1})$ $tq.add(match(p_1, p_2, \dots, p_k))$ $O(10 \log n^{k-1})$ for $i \leftarrow 1$ to 10 do m = tq.poll()pq.add(m);
addPutativeMatches Analysis

Complexity

for $i \leftarrow 2$ to k do $| p_i = T_i$.getnearest (p_{i-1}) $O(kdn^{1-1/d})$ O(1) $small = size(p_1, p_2, \dots, p_k)$ O(kd)search = get search distance from smallO(1)tq = new PriorityQueue $O(\log n)$ $tq.add(match(p_1,p_2,\ldots,p_k))$ for $i \leftarrow 2$ to k do $O(kdn^{1-1/d})$ $list_i = T_i$.getnearest $(p_{i-1}, search)$ foreach list₂ as p₂ do foreach list₃ as p₃ do ... foreach $list_k$ as p_k do $dist = size(p_1, p_2, ..., p_k)$ if $dist \le small$ then $O(kdn^{k-1})$ $O(n^{k-1}\log n^{k-1})$ $tq.add(match(p_1, p_2, \dots, p_k))$ $O(10 \log n^{k-1})$ for $i \leftarrow 1$ to 10 do m = tq.poll()pq.add(m);

 $O(n^{k-1}\log n + kdn^{k-1} + 2kdn^{1-1/d})$

Complexity O(n)

```
G_1 = read input
for i \leftarrow 2 to k do
     G_i = read input
     T_i = makeKDTree(G_i)
pq = new PriorityQueue
matches = new ArrayList
foreach p_i \in G_1 do
     addPutativeMatches(p_i, pq)
while pq not empty do
     m = pq.poll()
     if all points are unused then
          foreach i < k do
               T_i.remove(m.i)
          matches.add(m)
     else
          if point m.1 \in G_1 is unused then
               if no more matches available then
                    addPutativeMatches(m.1, pq)
```

Complexity O(n)O(k)

```
G_1 = read input
for i \leftarrow 2 to k do
     G_i = read input
     T_i = makeKDTree(G_i)
pq = new PriorityQueue
matches = new ArrayList
foreach p_i \in G_1 do
     addPutativeMatches(p_i, pq)
while pq not empty do
     m = pq.poll()
     if all points are unused then
          foreach i < k do
               T_i.remove(m.i)
          matches.add(m)
     else
          if point m.1 \in G_1 is unused then
               if no more matches available then
                    addPutativeMatches(m.1, pq)
```

Complexity O(n) O(k) $O(n + n \log n)$

```
G_1 = read input
for i \leftarrow 2 to k do
     G_i = read input
     T_i = makeKDTree(G_i)
pq = new PriorityQueue
matches = new ArrayList
foreach p_i \in G_1 do
     addPutativeMatches(p_i, pq)
while pq not empty do
     m = pq.poll()
     if all points are unused then
          foreach i < k do
               T_i.remove(m.i)
          matches.add(m)
     else
          if point m.1 \in G_1 is unused then
               if no more matches available then
                    addPutativeMatches(m.1, pq)
```

Complexity O(n) $O(kn \log n)$ O(1)O(1)

 $G_1 = read input$ for $i \leftarrow 2$ to k do G_i = read input $T_i = makeKDTree(G_i)$ pq = new PriorityQueue*matches* = new ArrayList foreach $p_i \in G_1$ do addPutativeMatches(p_i, pq) while pq not empty do m = pq.poll()if all points are unused then foreach i < k do T_i .remove(m.i) matches.add(m) else if point $m.1 \in G_1$ is unused then if no more matches available then addPutativeMatches(m.1, pq)

Complexity O(n) $O(kn \log n)$ O(1)O(1)O(n)

```
G_1 = read input
for i \leftarrow 2 to k do
     G_i = read input
     T_i = makeKDTree(G_i)
pq = new PriorityQueue
matches = new ArrayList
foreach p_i \in G_1 do
     addPutativeMatches(p_i, pq)
while pq not empty do
     m = pq.poll()
     if all points are unused then
          foreach i < k do
               T_i.remove(m.i)
          matches.add(m)
     else
          if point m.1 \in G_1 is unused then
               if no more matches available then
                    addPutativeMatches(m.1, pq)
```


Complexity O(n) $O(kn \log n)$ O(1) O(1) O(n) $O(n^{k-1} \log n)$

```
G_1 = read input
for i \leftarrow 2 to k do
     G_i = read input
     T_i = makeKDTree(G_i)
pq = new PriorityQueue
matches = new ArrayList
foreach p_i \in G_1 do
     addPutativeMatches(p_i, pq)
while pq not empty do
     m = pq.poll()
     if all points are unused then
          foreach i < k do
               T_i.remove(m.i)
          matches.add(m)
     else
          if point m.1 \in G_1 is unused then
               if no more matches available then
                    addPutativeMatches(m.1, pq)
```


Complexity O(n) $O(kn \log n)$ O(1)O(1) $O(n^k \log n)$ $O(n^k)$

```
G_1 = read input
for i \leftarrow 2 to k do
     G_i = read input
     T_i = makeKDTree(G_i)
pq = new PriorityQueue
matches = new ArrayList
foreach p_i \in G_1 do
     addPutativeMatches(p_i, pq)
while pq not empty do
     m = pq.poll()
     if all points are unused then
          foreach i < k do
               T_i.remove(m.i)
          matches.add(m)
     else
          if point m.1 \in G_1 is unused then
               if no more matches available then
                    addPutativeMatches(m.1, pq)
```

Complexity O(n) $O(kn \log n)$ O(1)O(1) $O(n^k \log n)$ $O(n^k)$ $O(\log n)$

```
G_1 = read input
for i \leftarrow 2 to k do
     G_i = read input
     T_i = makeKDTree(G_i)
pq = new PriorityQueue
matches = new ArrayList
foreach p_i \in G_1 do
     addPutativeMatches(p_i, pq)
while pq not empty do
     m = pq.poll()
     if all points are unused then
          foreach i < k do
               T_i.remove(m.i)
          matches.add(m)
     else
          if point m.1 \in G_1 is unused then
               if no more matches available then
                    addPutativeMatches(m.1, pq)
```

Complexity $G_1 = read input$ O(n)for $i \leftarrow 2$ to k do G_i = read input $O(kn \log n)$ $T_i = makeKDTree(G_i)$ O(1)pq = new PriorityQueueO(1)*matches* = new ArrayList foreach $p_i \in G_1$ do $O(n^k \log n)$ addPutativeMatches (p_i, pq) while pq not empty do $O(n^k \log n)$ m = pq.poll()if all points are unused then foreach i < k do $O(n(k \log n + \log n))$ T_i .remove(*m.i*) matches.add(m) else if point $m.1 \in G_1$ is unused then if no more matches available then addPutativeMatches(m.1, pq)

Complexity $G_1 = read input$ O(n)for $i \leftarrow 2$ to k do G_i = read input $O(kn \log n)$ $T_i = makeKDTree(G_i)$ O(1)pq = new PriorityQueueO(1)*matches* = new ArrayList foreach $p_i \in G_1$ do $O(n^k \log n)$ addPutativeMatches(p_i, pq) while pq not empty do $O(n^k \log n)$ m = pq.poll()if all points are unused then foreach i < k do $O(n(k \log n + \log n))$ T_i .remove(*m.i*) matches.add(m) $O(n^k - n)$ else if point $m.1 \in G_1$ is unused then if no more matches available then addPutativeMatches(*m*.1, *pq*)

Complexity $G_1 = read input$ O(n)for $i \leftarrow 2$ to k do G_i = read input $O(kn \log n)$ $T_i = makeKDTree(G_i)$ O(1)pq = new PriorityQueueO(1)*matches* = new ArrayList foreach $p_i \in G_1$ do $O(n^k \log n)$ addPutativeMatches(p_i, pq) while pq not empty do $O(n^k \log n)$ m = pq.poll()if all points are unused then foreach i < k do $O(n(k \log n + \log n))$ T_i .remove(*m.i*) matches.add(m) $O(n^k - n)$ else if point $m.1 \in G_1$ is unused then $O(n^{k-1}\log n)$ if no more matches available then addPutativeMatches(*m*.1, *pq*)

Complexity $O(n)$	$G_1 = \text{read input}$
$O(kn \log n)$	$ \begin{array}{c} G_i = \text{read input} \\ T_i = \text{makeKDTree}(G_i) \end{array} $
$O(1) \\ O(1)$	pq = new PriorityQueue matches = new ArrayList
$O(n^k \log n)$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$O(n^k \log n)$	while pq not empty do m = pq.poll() if all points are unused then
$O(n(k \log n + \log n))$	foreach $i \leq k$ do $\begin{bmatrix} T_i.remove(m.i) \end{bmatrix}$
	else matches.add(m)
$O(n^{2k-1}\log n)$	$ \begin{array}{ c c } & \textbf{if point } m.1 \in G_1 \textit{ is unused then} \\ & \textbf{if no more matches available then} \\ & \textbf{addPutativeMatches}(m.1, pq) \end{array} $

Measuring Matches: Convex Hull

- Avoids TSP encountered with perimeter
- $\Omega(n^{\lfloor d/2 \rfloor})$ for d > 3

kd-tree Data Structure

kd-trees

- Multi-dimensional data structure introduced by Bentley (1975)
- Based on binary search trees
- Each level i divides the search space in dimension $i \mod d$

kd-tree Data Structure

Insert

- Search for node in the tree, if not found, add node
- Average cost: $O(\log n) \approx 1.386 \log_2 n$ (by Knuth)
- Can use Insert to build kd-tree
 - Inserting random nodes to build kd-tree is statistically similar to building bst
 - Build cost: $O(n \log n)$ for sufficiently random nodes

Optimize

- Given all *n* nodes, build an optimal kd-tree
- Uses the median for each dimension as discriminator for that level
- $O(n \log n)$ running time
- Maximum path length: $\lfloor \log_2 n \rfloor$

kd-tree Data Structure

Delete

- Must replace node with *j*-max element of left tree or *j*-min element of right tree
- Worst Case Cost: $O(n^{1-1/d})$, dominated by find min/max
- Average Delete Cost: $O(\log n)$

Nearest Neighbor Queries

- Bentley's Original algorithm: empirically $O(\log n)$ (redacted)
- Friedman and Bentley: empirically $O(\log_2 n)$
- Lee and Wong ('80): Worst case: $O(n^{1-1/k})$

Proof of Correctness: Centroid

We want to find r such that given m with k points,

$$s = max \left(\sum_{l=1}^d (p_l - c_l(m))^2
ight), orall p \in m,$$

where s is the maximum Euclidean distance to centroid.

• First, consider $size(m) \le ks^2$. Remember,

$$size(m) = \sum_{i=1}^k \left(\sum_{j=1}^d \left(p_{i,j} - c_j(m)\right)^2\right)^2$$

Since $\sum_{j=1}^{d} (p_{i,j} - c_j(m))^2 \le s$ for all i, this is trivially true.

Proof of Correctness: Centroid

Second, there exists p_j outside of r, with p_j, p_i ∈ m'. Let x and y be the distance from p_i and p_j to c(m'), respectively. By assumption, x + y ≥ r. Since size(m) ≤ ks², we show

$$size(m) \le ks^2 \le x^2 + y^2 \le size(m')$$

With minimal x + y, x + y = r. Then we know

$$\frac{r^2}{2} \le x^2 + y^2 \le r^2.$$

Therefore

$$ks^{2} \leq \frac{r^{2}}{2}$$
$$ks^{2} \leq \frac{k^{2}s^{2}}{2}$$
$$2 \leq k.$$

Centroid Measures

Visible differences between max, average (variance), and sum of squared distances to the centroid.

Centroid Measures

Equivalent matches under each measure to the centroid.

kd-tree Empirical Performance

