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1 Motivation

Every drug seeking FDA approval must go through Phase II and III clinical trial
periods (trials on human participants) to determine its safety and effectiveness
[1]. They are tested against a placebo and sometimes compared to the effective-
ness of similar drugs. How can we guarantee that the data accurately depicts the
effectiveness of the drug and not differences in physical traits–body type, age,
gender, ethnicity, etc–of the patients? We would like to be able to match par-
ticipants of roughly the same traits who are taking different drugs to determine
each drug’s effectiveness. Consider the following example. We would like to test
Advil and Tylenol against a placebo to see which drug is the best pain reliever.
For this study, we want to compare people of similar weight and age to test the
effectiveness of each drug. Figure 1 shows a plot of sample patients based on age
and weight.

This matching may be computed by hand, but is more conveniently calculated
by an efficient algorithm. A naive approach for a matching algorithm would
include matching all participants taking each drug, sorting them based on the
quality of the match, then picking matches in order ensuring that no person is
used twice. Assuming there are n participants taking each drug, this will lead to
n3 total matches requiring O(n3) space complexity to store this data. If the trial
contains 300 participants, that would be 1003 = 1, 000, 000 matches to store. As
n grows, current hardware becomes unable to store the data efficiently.

We plan to pursue an algorithm that performs as well as brute force in the
worst case, but under a uniform density of data, will perform much better. First,
let us formalize the problem.

2 Problem Statement

The original problem was given for 3 colors in 2-dimensions–3 drugs tested con-
sidering 2 physical traits. We propose here a generalized statement of the problem
for an arbitrary number of dimensions d, and an arbitrary number of colors k.
Let K ⊆ Rd be a disjoint union of K1, ...,Kk. Define a match m ⊆ K such that
|m ∩Ki| = 1,∀Ki. Then M = {m} with |M | =

∏
i |Ki| and |K| =

∑
i |Ki|. For

this paper, let us assume |K1| = |K2| = ... = |Kk| = n, so that |M | = nk.
To define the smallest match, let us define the match measure function

size : M → R.
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Fig. 1. Sample plot of patient weight verses age, where participants are taking either
Advil, Tylenol, or a placebo drug.

Fig. 2. Sample smallest match in 2 dimensions with 3 colors.



This function must not depend on the order of the points in the match, but give
a consistent measurement of each match. For the case of 3 colors, let us define
K1 = R (for red), K2 = G (for green), K3 = B (for blue), and size(m) as the
perimeter of the triangle (r, g, b) ∈ R×G×B. Figure 2 shows the smallest match
in a grouping of points.

3 Background and Related Work

In order to improve upon the brute force implementation, we sought to reduce
the number of matches considered for a given point. Around each point we
only want to consider some small search radius for a match, therefore limiting
the number of matches considered to those within that radius. For 3 colors, the
intuition is to reduce a point’s n2-match search space to one that only contains a
constant number of points. This leads us to a nearest neighbor search, which has
been approached sucessfully with k-d trees [2]. Specifically, Samet in [3] shows
that building the k-d tree structure with n points requires O(n log n) time. More
importantly to our discussion is the insertion and search time complexity, which
Samet shows to be O(log2 n) in the expected case. In the worst case, however,
the running time is O(dn1−1/d) for d dimensions.

We propose leveraging k-d trees’ O(log2 n) expected case lookup cost to find
points within a neighborhood, reducing the cost of creating a match for any given
point to O(log2 n + C) from O(n2), where C is a constant number of matches
considered in that search area.

4 Existing Algorithm

The brute force method described earlier for 3 colors included creating all n3

matches, sorting them by perimeter, then saving the top n matches in the list
where the points have not been used before in another match is shown in Al-
gorithm 1. This method requires O(n3 log n) time in the worst case, since it
requires the sorting step. The downfall of this approach, as discussed, is the
O(n3) space complexity requirement, which limits the size of n due to system
space constraints.

An alternative brute force algorithm that reduces the space complexty to
O(n) increases the time complexity to O(n4). This algorithm loops over k =
0 : n − 1 to examine all (n − k)3 matches left, only stores the smallest per
iteration, and removes the used points from the pool. This approach can be seen
in Algorithm 2.

Our first approach to beat these brute force algorithms loops over the n red
points, searching for nearest neighbor blue and green points. It then performs
a nearest-neighbor search over the area within a perimeter/2 radius of the red
point to determine if a smaller match exists for this point. It repeats this process
until all n matches are found. This algorithm utilizes k-d trees [2] to provide
efficient nearest-neighbor lookups.



Algorithm 1: Brute Force Algorithm requiring O(n3) space, O(n3 log n)
time
Input: 3 sets of n points
Output: set of n ordered smallest matches of 3 points each

read input from file1

foreach red do2

foreach green do3

foreach blue do4

M ← m = {r, g, b}5

sort(M)6

foreach M do7

if rm, gm, bm clean then8

Mans ← m9

return Mans10

Algorithm 2: Brute Force Algorithm requiring O(n) space, O(n4) time

Input: 3 sets of n points
Output: set of n ordered smallest matches of 3 points each

read input from file1

for i = 1 : n do2

smallest = MAX3

msmallest = null4

foreach red do5

foreach green do6

foreach blue do7

if size(m = {r, g, b} < smallest then8

msmallest = m9

smallest = size(m)10

Mans ← msmallest11

remove rm, gm, bm from red, green, blue12

return Mans13



5 Research Questions and Extensions

The purpose of this project is to extend and improve upon brute force and our
first approach as defined above. We plan to do the following:

– Analyze the time complexity of the current k-d tree algorithm for both worst-
case and expected case running times and prove its correctness,

– Examine other methods for defining the size of a match that are not de-
pendent or limited by dimensionality, number of colors, or ordering of the
points,

– Generalize the algorithm to an arbitrary k colors in d dimensions, as defined
in the problem statement,

– Analyze the general algorithm under both worst-case and expected case run-
ning times and prove correctness.
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