
Security Analysis and Superscalar Expansion

of a Tamper Evident Microprocessor

Robbie Hott, Aleksander Morgan, Benjamin Rodes

December 12, 2010

1 Introduction

Secure software systems ultimately rely on the assumption
that microprocessors are trustworthy. By modifying lines of
Verilog code, a malicious designer could inject a hardware
backdoor, subverting all security software and compromising
confidentiality, integrity, or availability of a system. In se-
curity and safety critical systems, such as military and air-
line systems, this is an unacceptable assumption, especially
in light of high-profile incidents attributed to microprocessor
trojans and backdoor kill switches [1,5].

Given the complexity of processors, the collaborative en-
vironment in which they are designed, and the large input
space of components, establishing the trustworthiness of a
microprocessor is practically infeasible [8]. While there are
schemes that attempt to discover possible backdoors prior to
system release [3], no guarantees can be made that all mali-
cious hardware has been detected or removed, which makes
it advisable to incorporate in the hardware a mechanism to
detect possible malicious activity and raise an alarm dynam-
ically.

In this paper we analyze and extend the tamper evident mi-
croprocessor design proposed by Waksman and Sethumadha-
van [8], in which they attempt to provide trust in a processor
(i.e., trust in the processor’s behaviour) without a full dupli-
cation of components. We scrutinize the level of security the
scheme provides, bringing to light the major flaws which we
believe provide too many risks for security and safety-critical
systems. Despite these issues, we also provide an expansion
from the scalar architecture used in their design to a super-
scalar processor, with emphasis placed on its additional com-
plexity. We believe that while a paranoid approach is best
for security, in which no ignored flaws are acceptable, some
systems may be willing to sacrifice total security for partial se-
curity and efficiency of resources (such as space, performance,
and cost).

The remainder of this paper is organized as follows: Section
2 discusses similar works to the tamper evident microproces-
sor, with section 3 providing an overview of the Waksman
and Sethumadhavan’s design. Section 4 investigates the secu-
rity their design provides. Section 5 addresses new assump-
tions imposed on monitors. Sections 6 and 7 describe our
superscalar adaptations. Finally, in Section 8 we provide our
conclusions and possible future work.

2 Related Work

The BlueChip system created by Hicks, et al. [3], attempts
to extricate possible hardware backdoors by removing unused
circuits from the design. Tests from the design verification
phase are used to define correct hardware. Any hardware that
remains unused during testing is removed from the design and
emulated in the BlueChip software. This strategy suffers from
false positives and false negatives; it does not guarantee that
all necessary hardware remains, nor that all backdoors have
been removed.

Another design, proposed by Chatterjee, Weaver, and
Austin [2], suggests adding a secondary simple processor that
will replicate each pipeline stage of the core processor in par-
allel. This design validates the final outcome of the untrusted
core processor, but does not account for extra instructions
or bogus middle stages that could be performed by the core
processor.

Waksman and Sethumadhavan [8] propose implementing a
run-time test as in [2], but moving most of the testing onto the
core processor. They design a tamper evident microprocessor
for a simple in-order scalar pipeline, proposing two mecha-
nisms, DataWatch and TrustNet, to be used in conjunction
with the simple checker processor in [2].

3 Tamper Evident Microprocessor

The tamper evident microprocessor design of Waksman and
Sethumadhavan [8] relies on a multitude of simple mon-
itors to detect malicious activity in both pipeline stages
and the memory hierarchy of a scalar processor (resembling
OpenSPARC). These monitors are divided into two categories
called DataWatch and TrustNet, both of which aim to cre-
ate a trustworthy CPU containing at most one untrustworthy
unit, without fully duplicating the processor (the traditional
approach for trustworthy processors [8]).

DataWatch and TrustNet monitor individual units by com-
paring the predicted output of each monitored unit with its
actual output using simple comparison hardware, such as an
XOR gate. The unit that provides a monitor with predicted
output is called a predictor. The processor unit that receives
the actual output from the monitored unit is used as the reac-
tor. A predictor is typically an earlier pipeline stage or lower
level cache than the monitored unit; a reactor is typically a
subsequent pipeline stage or higher level cache. The monitor

1

triangle structure, as displayed in [8], is depicted in Figure 1.
If a monitor detects a discrepancy between the predictor and
reactor inputs, an alarm is raised.

Figure 1: TrustNet/DataWatch monitor triangle structure, as
proposed in [8].

The authors describe a taxonomy for categorizing hardware
backdoors. Backdoors that alter the number of instructions
exiting a pipeline stage are referred to as emitter backdoors,
while backdoors that corrupt data in any way are referred
to as data corruptor backdoors. TrustNet monitors detect
emitter attacks; DataWatch monitors detect data corrupter
attacks. Other attacks, such as those that rely on environ-
mental factors (i.e., hardware side channels) have previously
been investigated, so the authors chose not to handle these
for their design.

The TrustNet and DataWatch design is proposed under sev-
eral assumptions, summarized here:

• An adversary is able to inject a hardware backdoor in
only one architectural unit and not across pipeline stages.
In other words, cooperating units are not simultaneously
lying. This assumption is made given the highly divided
and specialized teams of designers. Although these teams
do collaborate and could work in tandem for malicious
intent, the authors deem it more likely that only a few
members of one team are corrupt.

• Backdoors are injected early in the architecture design
process, such as during the design specification or the
RTL. The authors also assume these injected backdoors
are not caught through design reviews.

• Backdoors may not always be active; they may be trig-
gered either by some special input or by a time delay.
This further assures the backdoor is not caught through
design reviews.

• ROMs written during the microprocessor design phase
are statically verifiable.

• The TrustNet and DataWatch monitors are statically
verifiable. The monitors consist of a few logic gates and a
buffer for queuing up predictor values. In order to build
trust, we have to have a foundation of trust on which to

build. If we cannot trust the monitors, whose purpose
is to generate trust, then the entire monitoring scheme
crumbles.

In addition to TrustNet and DataWatch monitors, some
duplication is still required. Full duplication of a unit is un-
avoidable in some situations such as duplication of the ALUs.
In other situations, such as for the TLB monitors, the authors
propose a partial duplication, or “smart” duplication. Smart
duplication avoids the overhead of complete duplication, while
still providing the ability to verify a processor unit.

A total of 13 monitors were proposed for detecting instruc-
tion tampering in the scalar processor. Of these, 9 were Trust-
Net monitors and the remaining 4 were DataWatch monitors.
The general specifications of these monitors are listed in Ta-
ble 1 and Table 2. In addition to TrustNet and DataWatch
monitors, some duplication of processor units (either full du-
plication or smart duplication) was used. The authors sug-
gested 21 attacks for their design consisting of both data cor-
rupter and emitter attacks. Of the specified data corrupters
attacks, only those which affect control flow, called control
corrupters, were actually implemented. The others require
duplication to be caught and were therefore omitted since
these are outside the scope of testing DataWatch and Trust-
Net.

4 Security Analysis

For all implemented attacks, TrustNet and DataWatch were
successful in attack detection. These attacks were specifically
built for the authors design, so these results are not entirely
surprising. We now analyze the proposed design and describe
the issues and holes that would result in possible undetected
hardware attacks.

4.1 Attacks on Availability

Merely recognizing attacks (i.e., detecting malicious tamper-
ing) does not provide trust in a system. Since deployed sys-
tems cannot be easily or quickly corrected, requiring hard-
ware replacement, a mechanism for handling monitor alarms
is necessary, yet absent from the authors’ design. They men-
tion using a rollback procedure to resume execution on the
last non-malicious instruction, or recording and discarding
offending instructions; however, both solutions may stall the
pipeline indefinitely. This reduces any detected attack to an
attack on availability. The authors note this, but seem ac-
cepting of availability attacks over confidentiality or integrity
attacks.

Integrity attacks alter the original form of data which can
be used for personal gain or sheerly destructive activities. For
example, an integrity attack could change a stock transaction
from a BUY to a SELL, or vice versa. Integrity attacks may
also be used to affect other security properties of systems,
namely confidentiality or availability. Because the current de-
sign reduces all detected attacks to availability attacks, this
means integrity attacks used as a mechanism to affect system

2

Monitored Unit Predictor Reactor Invariant

IDU IFU EXU # instructions in = # instructions out
IFU I-Cache IDU # instructions in = # instructions out
LSU D0 D-Cache # Mem ops issued = # Mem ops performed

I-Cache F0 L2 Cache # requested L2 instructions = # of F0 requests
L2 Cache I-Cache MMU # requested instructions = # I-Cache misses
D-Cache LSU L2 Cache # requested L2 data = # LSU misses
L2 Cache D-Cache MMU # requested data from memory = # D-Cache misses in L2
D-Cache LSU L2 Cache # L2 cache lines written = # LSU writes issued
L2 Cache D-Cache MMU # memory lines written = # D-cache writes issued

Table 1: Specifications for TrustNet scalar monitors from [8].

Monitored Unit Predictor Reactor Invariant

IFU IDU I-Cache PC received = PC computed
D-TLB Checker D-TLB LSU TLB output = checker TLB output
I-TLB Checker I-TLB F0 TLB output = checker TLB output
IDU IFU LSU memory ops issued = memory ops performed

Table 2: Specifications for DataWatch scalar monitors from [8].

availability will always succeed. Consider a missile guidance
system, or a nuclear power plant’s core temperature monitor-
ing system. If the attacker’s intent is to alter computed data
such that a missile misses its target, or a nuclear power plant
melts down, he could do so either by generating incorrect data
in hardware (an integrity attack aimed toward availability),
or by making the hardware unavailable (a strict availability
attack). This makes integrity attacks of this kind particularly
problematic.

Presumably, an attacker would want any hardware back-
doors to be sophisticated enough to allow for full access to
a system and/or recovery of sensitive information. These
attacks typically attempt to be covert. An attacker, how-
ever, may wish only to affect only system availability, which
is highly overt. A backdoor designed for this purpose alone
can simply fail after a given time period. Since the current
design reduces all attacks to availability attacks, an attacker
could conceivably mitigate the overt nature of these attacks
by obfuscating the location of the attack if the malicious unit
is a predictor or reactor for some other unit. That is, if an
attacker can manipulate data sent to a monitor, then another
unit will be flagged as malicious, and an availability attack
will still occur. This type of attack may not be possible,
depending on the exact nature of the design, and what as-
sumptions can be made concerning the static verifiability of
how predictor or reactor units send data to monitors.

To prevent the reducibility of every attack to an attack on
availability, which consequently prevents availability attacks
in general, some kind of recovery mechanism is required. Re-
covery can be accomplished through duplication of the offend-
ing unit so that execution may continue with correct data.
Typically, at least three processors are required to determine
exactly what data should be used for recovery. If TrustNet
and DataWatch could be trusted to catch all attacks, then
this monitoring mechanism can be used in conjunction with

duplication to single out the correct processor unit without
the need for more than two processors. However, the scope of
TrustNet and DataWatch is limited to, for the most part, the
pre-execution stages of the pipeline. The units that are only
monitored by duplication, such as the ALUs, will require at
least three duplicates, as there is no mechanism to determine
which was correct under the current design.

Ultimately, malicious availability attacks are observably no
different than non-malicious hardware failure, and must be
handled in the same fashion: hardware duplication. Since
availability specific attacks could target any portion of any
particular unit, including the entire unit, only full duplication
of every processor unit will prevent these attacks.

4.2 Attacks on DataWatch

DataWatch appears to be rather problematic in general. Not
only are DataWatch monitors missing for most units covered
by TrustNet, the units that are monitored have theoretical
attack loopholes, due to both the lack of monitor coverage
and the nature in which monitoring is performed.

The emphasis of the author’s design appears to be on Trust-
Net. There are only 4 suggested DataWatch monitors, leaving
significant gaps in the processor security. TrustNet protects
the IFU, IDU, LSU, as well as various elements of the mem-
ory hierarchy, yet the LSU and all of the memory hierarchy
are not monitored by DataWatch. It is most shocking that
the LSU is not protected in some way, since this unit interacts
with process state, and any unit not covered could conceivably
manipulate both instructions and data in any fashion. Even if
TrustNet can be fully trusted, it will be rendered practically
useless if these unmonitored units can change an instruction
or parameter arbitrarily.

For those units that are covered by DataWatch, the way
in which the unit is monitored does not cover all angles of

3

attack. Any processor unit which provides unique manipu-
lation, interpretation or execution of instructions will require
duplication to guarantee complete trustworthiness. Consider
the IDU. The IDU alone is responsible for interpreting and
fetching parameters of instructions. A malicious IDU could
insert or alter parameters for an instruction which no other
pipeline stage could detect without duplication. The authors
attempt to catch alterations to the instruction itself, such as
changing an ALU instruction to a memory instruction, but al-
teration to the instruction’s parameters are unaccounted for
and cannot be caught without duplication.

The IFU suffers from a similar problem. DataWatch only
verifies the PC of the instruction received by the IDU, not the
actual instructions that are passed to the IDU. A malicious
IFU could falsify an instruction while making the PC appear
to be genuine (i.e., the expected PC). The IDU would receive
the proper PC and an invalid instruction, raising no alarms.

The way in which DataWatch captures values to be mon-
itored is also potentially problematic. DataWatch takes a
signature of a monitored value for comparison by a monitor
instead of the complete value. Without monitoring the en-
tire value in question, a malicious unit may be able to alter a
value such that the signature is still the same, thereby elud-
ing detection. For example, in the suggested design, a two bit
signature is used to protect against the IDU from changing
an instruction. A malicious IDU could change the instruction
such that the signature is unaffected. The manipulated data
will at least cause an availability attack if the manipulated
value results in a runtime exception (i.e., the resulting mali-
cious instruction is not valid). However, it is conceivable that
a signature collision could exist that produces valid and useful
instructions for an adversary. For instance, given a sequence
of malicious instructions that must be executed to implement
an attack, say with signatures 11, 10, 01, and 11. The IDU
can compute the signature of each incoming instruction, and
replace the first instruction having signature 11 with the first
malicious instruction, replace the next instruction having sig-
nature 10 with the next malicious instruction, and so on.

Cryptographic hashes of entire instructions or operands, in
which collisions are highly improbable, are likely not a viable
option because of both the small size of the monitored values
(perhaps only a few bytes) and the latency a hash of this kind
will impose on the processor. A better approach would be to
use the entire value for monitoring, which may have overhead
issues as well; however, this is probably the simplest solution.

4.3 Attacks on TrustNet

The concept of TrustNet seems sound to provide adequate
protection under its purpose of detecting emitter attacks. It
appears to be difficult to inject or delete instructions from the
IDU or LSU without detection; however, the same cannot be
said for the IFU.

It is not clear how the TrustNet monitors for the IFU and
memory hierarchy work. The IFU monitor description states
that it assures that the unit only sends to the IDU as many in-
structions as were fetched from the instruction cache. Perhaps

a malicious IFU can simply not fetch from the instruction
cache, thereby deleting instructions from the pipeline. Alter-
natively, the IFU could fetch more instructions from cache,
but then ignore them to add bogus instructions while cor-
recting the PC, as described in the section on DataWatch
attacks, to prevent the IFU DataWatch monitor from trigger-
ing an alarm. This kind of attack may also be possible with
units in the memory hierarchy. Again, it is not clear how
these monitors work, so it is difficult to gauge if this kind of
attack is even possible under the current design.

4.4 Register Write Back

At some point in the pipeline, values must be written back
to registers. Yet, no mention of register write back is made
either by TrustNet, DataWatch, or any duplication mecha-
nism. Depending on the actual implementation, a dedicated
write back unit may not even exist; however, some unit must
be the last to handle a piece of data and to route that data
to a register. Under the current design, there is no reason to
assume data will arrive in the register file as intended.

Trying to devise a DataWatch monitor for write back,
whether or not it is a dedicated unit of the pipeline, may
be problematic since there are no subsequent stages to act
as a reactor. A monitor could be fabricated, at the cost of
an additional pipeline cycles, which would compare what is
stored in a predicted register with what is actually present.
This monitor is more complicated than the originally pro-
posed monitors, and therefore may be corruptible if it can-
not be statically verified. It may be possible simply to tap
the data sent to the register file for comparison against an
expected value. However, since the actual register is never
checked, it may still be possible to store invalid data or send
the data to an invalid location without detection.

A TrustNet monitor may still be conceived for write back,
assuming that any signal sent to the register file can be mon-
itored. The TrustNet monitor would then raise an alarm if
a unit performs a write back when no request was actually
made.

4.5 Analysis Summary

The major struggle in properly analyzing the Waksman and
Sethumadhavan design is the lack of real world, well doc-
umented hardware backdoors. Some attacks have been at-
tributed to hardware trojans [5], while other attacks have
been academically proposed, both simple and sophisticated
[4]. Without a study into the reality of hardware backdoors,
it is hard to argue the authors’ scheme provides adequate se-
curity due to a theoretical lack of protection. That is, some of
the risks present in the design may, in reality, be infeasible to
exploit due to their innate complexity, likely detectable prior
to hardware release. There is no data to support this, how-
ever. The authors even speculate that data corrupter attacks
are unlikely, yet there is no convincing evidence.

Additionally, the authors’ design was very difficult to ana-
lyze due to lack of detail. The design specifics are described

4

rather abstractly, with the exact nature of their pipeline and
memory hierarchy not clearly defined, leaving us in the dark
as to how secure the system actually is, and what kind of
attacks are still possible.

Based on the design present in the authors’ paper, we have
shown the tamper evident design leaves open many possibil-
ities for attacks, and therefore may have to be discarded in
favor of complete duplication of the processor. It is prefer-
able to avoid duplication, especially multiple duplication as
we suggest is required for attack recovery, in order to balance
cost of resources and desired security goals. There is a de-
gree of security that is provided in this design, as it is able
to catch the attacks used in the authors’ validation, therefore
there may still be some merit in the design concept. In fact,
we believe the concept of TrustNet is fairly sound and could
be made to catch all inserted or deleted instructions under the
same design assumptions the authors made, even though this
mechanism has a somewhat limited attack space coverage.

5 Generalization of Monitors

Accepting the security risks for a less expensive yet somewhat
secure processor, we now extend the TrustNet and DataWatch
monitor design onto a more viable processor. The initial
conversion is to a simple superscalar processor, Sun’s Super-
SPARC. After expanding to TrustNet and DataWatch to the
SuperSPARC, we would also like to add additional monitors
to cover the textbook n-wide superscalar processor. Since
an n-wide academic processor provides register renaming, a
reorder buffer, and out-of-order execution, we must address
each of these new functionalities and how they can be se-
cured. These additional functionalities require us to general-
ize the definition of monitors as proposed by Waksman and
Sethumadhavan.

To do so, we first rephrase the idea of a monitor and dis-
cuss the assumptions that are implicit in the original design,
but need to be made explicit and generalized for our design.
The result of this section is a modified monitor description
and design assumptions that will be adequate to handle the
complexities of superscalar designs.

5.1 Rephrased Monitors

Sethumadvan and Waksman use the concept of a monitor to
make sure that all the processor calculations are trustworthy.
Their monitor receives some information from one unit (called
the predictor), holds that data for a specified number of cy-
cles, receives data from another unit (called the reactor), and
performs a calculation to make sure the two pieces of data are
consistent. In doing so, it monitors one function of a partic-
ular unit, called the monitored unit. The units with multiple
functions, such as the L2 data cache, have multiple monitors
present, namely read and write monitors.

This notion of a monitor is inadequate for handling the
complexities of the superscalar design. While most of the
TrustNet monitors tend to generalize easily to superscalar,
as described in Section 6, DataWatch monitors become more

complicated due to the non-deterministic function of some
units which make decisions based on heuristics. As a result,
in order to generalize the notion of a monitor to a superscalar
design, we extend several definitions.

While the original monitors held on to data in latches for a
specified number of cycles, our generalized monitor can hold
on to data indefinitely, in data storage structures. This gen-
eralization is necessary because the allowing of out-of-order
completion makes it impractical to try to predict the latency
of an individual instruction through the pipeline.

In addition, the original concept of a monitor received the
data only from two sources, a predictor and reactor, one a
number of clock cycles after the other. The alarm is sounded
if the data from the reactor does not match the data expected
based on the input of the predictor. On the other hand, our
generalized monitor concept may receive data from more than
two different sources. This monitor may receive information
not only from multiple predictors and reactors, but also have
its data structure updated by other units in the pipeline.

With these generalizations in mind, we discuss the implicit
assumptions of Sethumadvan and Waksman.

5.2 Simplicity Assumption

Sethumadvan and Waksman had several assumptions that
they did not make explicit. Because our design needs to gen-
eralize those assumptions, we must make them explicit. One
of the assumptions glossed over in the original design was the
simplicity argument. It implies that while the designers are
not sure of trustworthiness of all other units, the monitor can
be trusted to:

1. receive information properly, since it can be manually
verified that the input wires come from the right places,

2. hold on to information properly, which for the original
design is assumed because the information is held in sim-
ple latches, and

3. perform the comparison correctly, since the logic per-
formed is fairly simple, and its correctness can be checked
by hand.

This simplicity argument is particularly important, since
if the monitor cannot be trusted, then not only can it allow
other attacks to succeed, but also it becomes a key vulnera-
bility, opening the door to many attacks. As a result, before
any claim of utility of the generalized monitor is asserted, the
simplicity argument will have to apply to it as well. We make
the following justifications for this assumption:

1. The generalized monitor can receive information properly
for the same reason as the originally proposed monitor.

2. The generalized monitor can hold on to information prop-
erly if we make sure that the only write ports to the data
storage cells come from the proper source. This is, in
essence, a part of the “statically verifiable storage” as-
sumption from the original design.

5

3. The generalized monitor can perform the comparison cor-
rectly because, as with the original monitor design, the
comparison is performed via a simple XOR gate or a
small collection thereof.

4. In addition to the above three, we need the generalized
monitor to be able to find the correct address in the moni-
tor data storage structures correctly. We can assume this
can be verified statically as follows:

(a) we need to make sure that the wires to the monitor
run from the correct data storage structure, and

(b) the pointer needs to go to the right target, so the
wires indexing the target unit need to be checked
for correct redirecting.

Since we assume these four actions are statically verifiable,
our generalized monitor system can be assumed and tested to
be free of malicious tampering.

5.3 Safe Speculation

Another design assumption that is implicit in the original
design is the safe speculation assumption. In the original de-
sign, the predicted output of a given monitored unit arrived
at the monitor at the beginning of the clock cycle, with the
actual output arriving within one clock cycle after that. Since
the monitor is only a simple XOR gate, the result–and con-
sequently, the alarm–is attained very quickly, within a cycle
after the instruction passes through the monitored unit. In
our design, however, the monitors are more complicated and
may require cache lookups and more complex comparators,
such as multiple AND, OR, and XOR gates. Therefore, the
monitor may take more than one cycle after the output has
arrived from the reactor. In that case, we have the options of
halting the execution while the monitor checks, or assuming
that the instruction is safe, with the monitor’s alarm raised a
cycle or two after the fact. We assume the latter, calling this
assumption safe speculation. Since the alarm is not sounded
until the instructions are later in the pipeline, the recovery
must be able to figure out which instructions to flush from
the pipeline, and how to re-execute them without deviating
from the sequential architectural model.

5.4 Redundant Inconsistency

Finally, an assumption that we make, which is unique to su-
perscalar designs, is the assumption of redundant inconsis-
tency. Each of the processor units can be viewed as a black
box as long as the actions it performs are consistent with each
other. For instance, it is possible that when a unit stores a
value in the RRF to register 2, it actually gets stored in reg-
ister 1, and vice versa. However, as long as the references
to the registers are consistent, or in other words as long as
the processor receives the value of register 1 every single time
register 2 is read, and vice versa, then the sequential archi-
tecture model is not violated. We will state on which data
field of any unit in which redundant inconsistency is applied,
whenever this assumption is invoked.

6 SuperSPARC Adaptation

The SuperSPARC processor [7] is a simple superscalar proces-
sor based on the SPARC v8 instruction set, using a four-cycle
integer pipeline. The two-phase fetch cycle (F0, F1) fetches
up to four instructions per cycle, placing the fetched instruc-
tions into an instruction queue. The decode stage (D0, D1,
and D2) issues up to 3 instructions per cycle into either the
floating point unit or the integer execute stage. The Integer
execution stage (E0, E1) performs both data memory accesses
and 2-stage ALU operations. The pipeline concludes with the
write back stage, in which data is written to the register file
and stores are retired into the store buffer. Figure 2 shows a
simplified view of the SuperSPARC processor, while Table 3
gives a detailed overview of the pipeline stages. The pipeline
also supports both forwarding and cascading of dependent
data.

TrustNet and DataWatch can easily be extended to this
processor, since it closely follows the model of a scalar pro-
cessor, with one interesting catch: it fetches up to four in-
structions per cycle, but decodes only up to three. It does
this based on the following groups [7]:

• Maximum two integer operations

• Maximum one data memory reference

• Maximum one floating point instruction

• A group is terminated after each control transfer.

6.1 Simple Extended Monitors

Since the SuperSPARC processor closely resembles a scalar
processor with respect to the memory hierarchy and TLB
lookup strategies, we can easily extend the monitors from the
original Tamper Evident Microprocessor to the SuperSPARC.
These simple monitors include all the TrustNet monitors for
LSU, I-Cache, D-Cache, and L2 Cache, as well as DataWatch
monitors for the Data- and Instruction-TLBs. See Tables 4
and 5 for the full listing of monitors.

6.2 Adapted Monitors

Not all monitors can be easily extended to this new architec-
ture. We must adapt the fetch and decode monitors to handle
differing numbers of instructions per cycle, since the original
design assumed only one instruction through each pipeline
stage (in order). These adaptations can be simple, since the
SuperSPARC provides in-order fetch and decode: the fetch
and decode stages both happen before execution and cleanup
of out-of-order completion. A summary of the updated mon-
itors appears in Table 6.

6.2.1 Instruction Fetch Monitors

The SuperSPARC processor has two instruction queues: one
for branch taken, and one for branch not taken [6]. As a result,

6

Stage Activities Performed

F0 I-cache RAM and TLB lookup
F1 I-cache match detection and 4 instructions sent to instruction queue
D0 1-3 instructions issued, load/store address registers selected
D1 Read load/store address registers, allocate ALU resources, evaluate branch target address
D2 Read ALU operands, calculate effective addresses
E0 ALU stage 1, Data lookups, FP dispatch
E1 ALU stage 2, D-cace match detection, loads completed, exceptions resolved

WB Write back to register file and retire stores into buffer

Table 3: SuperSPARC’s pipeline stages, as described in [7].

Monitored Predictor Reactor Invariant Example of attack thwarted
Unit

LSU D0 D-Cache # Mem ops issued = # Mem ops LSU performs shadow loads
performed

I-Cache F0 L2 Cache # requested L2 instructions = # F0 I-Cache returns spurious instruction to
requests IFU while waiting on the L2 Cache

L2 Cache I-Cache MMU # requested instructions = # I-Cache L2 Cache returns suprious instruction
misses while waiting on main memory

D-Cache LSU L2 Cache # requested L2 data = # LSU misses D-Cache returns false data while
waiting on the L2 cache

L2 Cache D-Cache MMU # requested data from memory = L2 Cache returns spurious data
D-Cache misses in L2 while waiting on main memory

D-Cache LSU L2 Cache # L2 cache lines written = # LSU D-Cache sends write to L2 cache
writes issued unprompted

L2 Cache D-Cache MMU # memory lines written = # D-cache L2 sends write to memory unprompted
writes issued

Table 4: TrustNet scalar monitors that are extended to SuperSPARC.

Monitored Unit Predictor Reactor Invariant Example of attack thwarted

D-TLB Checker D-TLB LSU TLB output = checker TLB output TLB violates permissions

I-TLB Checker I-TLB F0 TLB output = checker TLB output TLB violates permissions

Table 5: DataWatch scalar monitors that are extended to SuperSPARC.

Monitored Unit(s) Predictor(s) Reactor(s) Invariant Example of attack thwarted

F0, F1 I-Cache I-Queue # instructions in = Fetch loads branch instructions
instructions out when no branch is present

F0, F1 D1, I-Queue I-Cache PC received = PC F0 fetches instructions from a
computed previous branch address

D0 I-Queue FPU, I-File # instructions in = Both branch-taken and not-taken
instructions out IQs send instructions to decode

D0 F1 FPU, I-File # memory ops issued = An ALU op is converted by D0 to a
memory ops performed write

Table 6: Updated TrustNet and DataWatch monitors for the SuperSPARC processor.

the monitors handling the instruction fetch and decode will
be more complicated than in the original design.

#1 IFU (F0, F1): The TrustNet monitor for the fetch unit,
stages F0 and F1, works similar to that of the original authors,

except we must use the instruction queue as the reactor, since
the decode unit may only decode one instruction during the
next cycle. Therefore, when a 4-instruction line is read out
of the instruction cache, the count (3 bits) and the target

7

I-Queue

Decode

D0,D1,D2
Fetch

F0, F1
IU EXE

E0,E1

WB

LSU

I-TLB

I-Cache

D-TLB

D-CacheL2 Cache

Memory

FPU

Figure 2: Simplified diagram of the SuperSPARC processor
showing unit communication, as considered in this paper.

instruction queue (1 bit) is sent to the monitor. Likewise, the
change in size of each I-Queue is read during the next cycle
and sent to the monitor. This monitor computes that the
change of the non-target I-Queue size is unchanged, and that
the change of the target I-Queue size is equal to the count.

This design requires four wires connecting the predictor and
the monitor, rather than just one. Similarly, it uses a count
from both instruction queues, requiring 8 more wires on the
reactor side. But, since these only grow with the width of
the pipeline, they should perform similar to the 2 wires in a
scalar pipeline. The monitor, since it is more complex, will
take more than one XOR gate, but should not require more
than a few gates to enact.

#2 IFU (F0, F1): The DataWatch monitor for the fetch
unit becomes a bit more complicated, since we currently have
branch prediction and multiple instructions in the pipeline at
any given time. We still want to ensure that if the instruction
cache receives a valid PC, it follows in program order from
previous instructions or is a valid branch address. Therefore,
the reactor will still be the I-Cache, which receives the final
PC value to fetch. The predictor and monitor, on the other
hand, must become more complicated. The D1 pipeline stage
and the instruction queues will predict the next PC value from
the fetch unit. Moreover, some duplication of the PC logic will
be necessary in order to compute the next sequential PC. The
entries written to the instruction queues will be forwarded to
a predictor unit, which will only use the last entry’s PC to
compute PC + 4 and attain the next sequential PC. That
value, and the branch target address computed in the D1
stage will be forwarded to the monitor. The monitor then
tests that the I-Cache’s received PC equals one of the two
actual PCs, either the calculated branch address or the next
sequential instruction.

As a note, we delay the actual testing of the PC in the mon-
itor by at least one cycle, since we must wait for the branch
target address to be calculated. This is a safe assumption be-
cause the branch target address will be computed before any
incorrect instructions are decoded, since the instructions are

scheduled in order. Due to this assumption, this monitor also
serves to verify the branch predictor.

This design only requires one additional PC to be sent to
the monitor, in addition to the original predictor and reactor
PCs from the initial scalar design, which in turn is required to
perform one additional test. Therefore, it should also perform
as well as the original.

6.2.2 Instruction Decode Monitors

#3 IDU (D0): The TrustNet monitor for the decode unit,
stage D0, also performs similar to that of the original au-
thors, except it only monitors the first stage of the decode
cycle. For TrustNet, we are only ensuring that the number of
instructions does not change, therefore we only need to moni-
tor the first stage of the decode unit which handles the issuing
of instructions. The I-Queues predict the D0 stage, and the
number of instructions removed from each queue in a given
clock cycle is forwarded to the monitor (2 bits per queue).
The floating point unit and integer execution stages react to
the decode stage, sending the number of instructions issued
for each cycle to the monitor. The monitor then checks for
two possible scenarios. First, the 2 bits from each instruction
queue are compared to ensure that the decode unit did not
schedule from both queues, raising an alarm if so. Second, it
computes that the OR of the counts of the two queues (the to-
tal instructions removed) is equal to the number received from
the reactors. Note: unlike the original authors, we cannot use
the IF to predict since that unit fetches up to 4 instructions,
but the decode stage only schedules 1, 2, or 3.

This design requires four wires connecting the predictors
and monitor, rather than just one, since the monitor must re-
ceive inputs from both queues. Similarly, it requires a count
from both the integer and floating point units, requiring an-
other 4 wires on the reactor side. But, since these only grow
with the width of the pipeline, they should perform similar to
the 2 wires on a scalar pipeline. The monitor, though, must
be able to test for equality using XOR gates, combine inputs
using OR gates, and perform these in a specific combination.
It, like the fetch monitors, only requires a small amount of ad-
ditional gates, with nothing very complicated, and therefore
should perform as well as the scalar version.

#4 IDU (D0): For the DataWatch monitoring of the de-
code unit, in order to match the decode DataWatch monitor
of the original design, we want to ensure that no instructions
were erroneously changed into memory operations by the D0
stage of the decoder. Since we are using the SPARC v8 in-
struction set, this test simply requires verifying the first two
bits of the instruction fetched. Memory operations have these
first two op bits set to 11 [6]. Since the processor fetches and
decodes multiple instructions in order, we introduce a simple
FIFO predictor unit that stores the first two bits, a token, of
each instruction fetched. These bits are stored when the F1
unit stores the instructions into the active instruction queue.
The floating point unit and integer execution stages react to
the decode stage, sending the monitor the type of instruction
decoded. With very simple logical gates, the monitor can test

8

that the first predictor token equals the token from the reac-
tor and validate that the number of memory instructions did
not change. Although we only monitor the first two bits of the
instruction to match the original author’s design, this could
be expanded to include more bits, up to the entire instruction.

This monitor, like its scalar version, is one of the more
complex monitors discussed so far. It must be able to access
the first two bits of each instruction as sent by the predictor.
The predictor unit must have four write ports to allow all four
instructions’ first bits to be inserted into the array in parallel.
The monitor may compare in the same fashion as the scalar
version, linearly, or it may utilize 3 read ports from the array
to XOR up to three instructions per cycle. Note that the
latter would require our monitor to be 3 times as wide as the
original.

6.3 SuperSPARC Adaptation Summary

SuperSPARC provides an easy adaptation of TrustNet and
DataWatch to a superscalar processor. Its design allows for
most of the monitors to be expanded directly from the scalar
pipeline proposed by Waksman and Sethumadhavan. How-
ever, we did have to tweak four monitors to achieve the same
attack space coverage as the scalar version. These updated
monitors still hold to most of the original design’s assump-
tions and are all still simple. Therefore, these monitors can
be statically verifiable and do not significantly increase the
processor’s complexity. We now must send 4 bits per clock
cycle instead of 1 for monitors 1 and 3 and increase the buffer
for monitor 4 slightly to handle the additional load due to
multiple instructions queueing at one time. Monitor 2’s pre-
dictor unit, which in the original design duplicated the PC
logic, must still compute the next PC to fetch. However, for
the SuperSPARC processor, it not only computes the PC for
the next line to fetch, but must also keep track of the branch
predictor’s prediction. Therefore, since the monitor assump-
tions hold and are on the same order as the scalar versions,
this design should perform as well as the original design and
cover the same attack space.

7 Generalized Superscalar Adapta-
tion

In order to extend to the textbook n-wide superscalar
pipeline, we note that we can build upon the monitors we pro-
vided for SuperSPARC, adding an instruction queue to this
generalized pipeline, as depicted in Figure 3. If the processor
always fetches and decodes n instructions per cycle, we would
be able to use a simpler (as compared with the SuperSPARC
monitors) n-wide version of Waksman and Sethumadhavan’s
scalar monitors for both fetch and decode. Since instruction
fetch and decode are accounted for, this leaves monitoring
register renaming and the reorder buffer, which allows out-of-
order execution, to address.

IDUIFU

EXE

WB

LSU

I-TLB

I-Cache

D-TLB

D-CacheL2 Cache

Memory

FPU

ROBARF

RRF

RU IW

Figure 3: Simplified diagram of the textbook superscalar pro-
cessor showing unit communication, as considered in this pa-
per.

7.1 Register Rename Monitors

Register renaming creates a security risk when expanding
TrustNet and DataWatch, since the authors’ scalar proces-
sor only uses one register file. In order to simplify the design,
we will assume that throughout renaming, our superscalar
pipeline fetches, decodes, and renames n instructions per cy-
cle in order. The set of hardware gates which implement
assigning an available rename register to each instruction’s
destination ARF register before that instruction proceeds to
the Issue Window (IW) will be called the Rename Unit (RU).
This unit is also responsible for ensuring that future instruc-
tions dependent on that computed value as a source operand
will be given the correct rename register. If we can verify
that registers have been renamed correctly without overwrit-
ing an in-use register and that the correct source operands are
assigned from the RRF, then the pipeline up to the IW re-
sembles the authors’ scalar pipeline, and all their assumptions
with relation to security apply. We propose the following two
monitors to handle this task:

RRF register Busy bit

t1 0 or 1
t2 0 or 1
...

...
tn 0 or 1

Table 7: Destination operand reassignment monitor array.

5 RU (destination renaming): The first monitor we pro-
pose is to guarantee that the rename unit does not rename
an instruction’s destination ARF register to an RRF regis-
ter that is currently being used. That is, a rename register
cannot be reassigned until after its value has been written to
the ARF. This monitor must utilize smart duplication of the
RRF, allowing it to validate the entries that are being assigned
in the real RRF. The monitor will include a direct-mapped
cache, which we refer to as an array, as depicted in Table 7.

9

Each instruction’s destination operand will be forwarded to
the monitor as it is written into the IW. The monitor will use
the destination RRF register received to index into its array
and obtain the busy bit. If the busy bit is 1, the alarm will be
thrown; if the busy bit is 0, no alarm will be thrown and the
monitor must update the busy bit to 1. Also, the busy bits
will be set to 0 during the commit stage, when the instruction
is retired from the ROB and the value of the RRF register is
written back to the ARF.

Therefore, this monitor is predicted by its own smartly du-
plicated RRF array. Its reactor is the output of the is the
rename stage, which will forward to the monitor the destina-
tion RRF register for the instruction on its way to the IW. We
can use the monitored unit as its own reactor by the redun-
dant inconsistency assumption, since an instruction will not
be renamed again once it leaves the rename unit and monitor
6 ensures that the assignments are consistent. Consequently,
since the monitor’s alarm is expected at a later pipeline stage,
rather than at the rename stage as the original TrustNet de-
sign implied, we only catch an erroneous renaming at least
one cycle after that renaming has occurred. As a result, the
pipeline needs a more complicated recovery process, since re-
covery from alarms of this monitor would involve flushing in-
structions that may already be in the execute stage.

ARF register RRF register assigned

r1 ti
r2 tj
...

...
rm tk

Table 8: Source operand renaming monitor array.

6 RU (source operands): Not only must we ensure that
busy registers are not allocated, but we must also monitor
that once a destination ARF register has been allocated an
RRF register, that mapped assignment propagates to future
reads of the ARF register until the register is reassigned.
Therefore, we propose a monitor to ensure that the renam-
ing of source operands happens correctly. This monitor, like
the previous, must also utilize smart duplication to ensure
the latest assignments of the correct registers are being used.
It will include a direct-mapped array of ARF to RRF as-
signments, indexed by the ARF register number, as seen in
Table 8. When a destination register is assigned during the
rename phase, the monitor’s table is updated to reflect the
current mapping. If the mapping is invalid, monitor 5 will
detect an incorrect mapping and raise an alarm.

Since we are monitoring the renaming of source operands,
the IDU will be used as the predictor. It will send to the mon-
itor the ARF registers it decoded as source operands of the
current instructions. As the rename stage is being performed,
the monitor will resolve the ARF entries to their current RRF
assignments using its array. Since we are assuming in-order
decode and rename, the monitor will see the register values
for the destination operands before the rename of the source

operand is complete. Once the instructions pass through the
rename phase, their renamed operands, as sent to the IW,
will be forwarded to the monitor and serve as the reactor.
This monitor will then compare the predicted RRF entries
needed with the RRF entries assigned, raising an alarm on a
mismatch.

7.1.1 Reorder Buffer Assumptions

We choose not to monitor the reorder buffer (ROB) due to
our simplicity assumption. Since the ROB is a storage unit,
we assume it can be statically verifiable. Any unit that would
be able to corrupt the ROB would have to do so through
standard pipeline channels, such as during updates to reorder
out-of-order execution. Since we cover register renaming with
monitors 5 and 6, as well as the decode and fetch stages with
the inherited monitors from the SuperSPARC design, we feel
it is safe to assume that until an instruction is issued into the
IW, the ROB has been updated correctly.

7.2 Generalized Superscalar Summary

In order to cover the same attack space for our generic super-
scalar processor as Waksman and Sethumadhavan, we cre-
ated two new monitors to cover register renaming to ensure
that the instructions are set up correctly before being exe-
cuted. The monitors, however, required new assumptions to
be made on what a monitor is and how complex it is allowed
to be. Also, these monitors required vast amounts of dupli-
cation, each storing an entry for every register in the RRF
or ARF, either indexed by the RRF register ID or the ARF
register ID. Assuming this amount of duplication is feasible
on a given chip, the 14 monitors we propose protect against
the same attacks as the scalar processor since the 12 for Su-
perSPARC provide that level of protection and the two new
monitors ensure that operands of each instruction successfully
arrive at the execution stage of the pipeline.

To ensure security beyond the rename stage would require
full duplication of the ROB and some execution units, as
the scalar version required duplication of the execution stage,
making TrustNet and DataWatch as expensive as full duplica-
tion for superscalar pipelines. Even providing the same level
of security as Waksman and Sethumadhavan, this design re-
quired partial duplications of the RRF and ARF arrays and
non-trivial monitors: far more duplication than the original
design.

8 Conclusions and Future Work

This paper extended the design of a Tamper Evident Micro-
processor to a superscalar version. To ensure completeness,
we applied the design to a SuperSPARC processor. Most of
the TrustNet monitors were simply extended to match the
width of the pipeline. Two TrustNet monitors had to be cus-
tomized to meet the design of SuperSPARC. Also, two of the
DataWatch monitors were extended, whereas two others were
customized. We then proposed a way to modify this design

10

Monitored Unit(s) Predictor(s) Reactor Invariant Example of attack thwarted

RU the monitor’s data output of RRF registers in use RU assigns a second ARF register
storage array RU to IW are not reassigned to an RRF register

RU IDU output of source operands RU directs a source operand to use
RU to IW correctly renamed another register’s value

Table 9: New TrustNet and DataWatch monitors for the generic superscalar processor.

to an academic superscalar design, which includes monitoring
a nondeterministic Rename Unit. In order to ensure the gen-
eralization was sound, several assumptions from the original
design had to be spelled out and extended.

The designs we proposed suffer from the same problems as
the original design. For instance, all attacks can still be re-
duced to an availability attack, no instruction operands can
be monitored without heavy duplication, and nothing start-
ing with the EXE stage is monitored. Even monitoring of
the post-EXE processes, such as committing of RRF regis-
ters, is limited to verification of correctness during IDU, and
depends on trustworthiness of the EXE stage and the ROB.
However, our designs do cover no less than the original design.
In particular, assuming the trustworthiness of the ROB, no
new risks are created by allowing register renaming and full
out-of-order execution.

Assuming our superscalar expansion suggestions are sound
under our assumptions, and provide a viable solution to some
users (i.e., the reduced security compared to full duplication
can be accepted), an actual implementation of our design on
hardware is left for future work. The logical next steps in
the process would be a simulation of these new monitors in a
software superscalar simulator, followed by detailed plans for
a current processor. However, a more-detailed low-level cost
analysis of our proposed design in terms of additional hard-
ware, power consumption, etc. is probably the most prudent
initial follow on to this work to determine if our design is even
desirable in terms of these properties.

Additionally, further expansions are also left for future
work, including the addition of handling side channel attacks,
recovery mechanisms, and a design to handle the possible cor-
ruption of multiple pipeline stages. It is also worth noting that
additional research into the current status of real world hard-
ware backdoors may make it easier to defend against them.

References

1. S. Adee. The hunt for the kill switch. IEEE Spectrum
Magazine, 45(5):3439, 2008.

2. S. Chatterjee, C. Weaver, and T. Austin. Efficient
checker processor design. In MICRO 33: Proceedings
of the 33rd annual ACM/IEEE international symposium
on Microarchitecture, pages 8797, New York, NY, USA,
2000. ACM.

3. M. Hicks, M. Finnicum, S. T. King, M. K. Martin and J.
M. Smith. Overcoming an untrusted computing base: de-

tecting and removing malicious hardware automatically.
IEEE Security and Privacy, 2010.

4. King, Tucek, Cozzie, Grier, Jiang, Zhou. Designing and
Implementing Malicious Hardware Proceedings of the 1st
USENIX Workshop and Large-Scale Exploits and Emer-
gent Threats pp. 1-8 2008.

5. J. Markoff. Old Trick Threatens the Newest
Weapons. http:// www.nytimes.com/ 2009/10/27/sci-
ence/27trojan.html?r=1/.

6. The SPARC Architecture Manual, Version 8. Menlo
Park, CA, 1992.

7. Sun Microsystems. The SuperSPARC Microprocessor,
Technical White Paper. 1992.

8. A. Waksman and S. Sethumadhavan. Tamper Evident
Microprocessors. In Proceedings of the 31st IEEE Sym-
posium on Security & Privacy (Oakland), May 2010.

11

