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KD-Tree Algorithm for Propensity Score Matching With Three or More
Treatment Groups

John R Hotta, Nathan Brunellea, Jessica A Myersb, Jeremy Rassenb, abhi shelata

aDepartment of Computer Science, University of Virginia
bBrigham and Women’s Hospital and Harvard Medical School

Abstract

Propensity scores (PS) have been widely used in epidemiology to control for confounding bias in non-experimental
comparative studies of drugs, but the technique of matching patients by score becomes computationally impractical
with studies of three or more treatment groups. Imbens’ generalized propensity score (GPS) provides a method for
comparing multiple treatments through regression, weighting, and other approaches. We present a multi-category
matching algorithm that matches patients across multiple groups under any number of normalized factors, including
the PS and GPS. The algorithm’s time complexity is expected-case quadratic on the number of participants per group.

Utilizing kd-tree data structures to provide efficient queries for nearby points and a search radius related to a
best-guess match between participants in each treatment group, we reduce the number of participants that must
be considered for each matching. We then match patients by the k factors defined, balancing the distribution of
confounders in each treatment group and thereby removing bias. Our algorithm outperforms the brute force matching
approach in the expected case, requiring only O(n) space and O(n2) time compared with brute force’s O(nk+1) time,
for k treatment groups. This difference is clearly seen in our simulation study of 1000 participants in 3 groups:
our algorithm matches on propensity score in 4.5 seconds compared to brute force’s 17.5 hours, using commodity
hardware available in 2012.

In the vast majority of cases, we can accomplish matching with three or more treatment groups without the
constraint of exponential growth of the search space. Considering four groups of 5,000 patients, that is a reduction
from 625 trillion matches to 100 million and orders of magnitude shorter computation time.

1. Introduction

Drugs that are marketed in the United States have
gone through substantial testing, from Phase I clinical
trials that examine basic pharmacology and toxicity to
wide-scale Phase III trials testing the safety and effec-
tiveness of a new agent against placebo or an existing
agent [1]. However, even the largest Phase III trials are
statistically underpowered to detect rare safety events,
and placebo-controlled trials of most new agents will not
yield information on how the drug compares to exist-
ing standards of care [2]. To evaluate these key factors,
non-randomized post-marketing studies that give clini-
cians insight on the comparative safety and effectiveness
of the the full range of possible treatment options are
crucial [3].

A major determinant of the success of these stud-
ies is how well confounding is controlled; that is, given
that patients in non-randomized settings are prescribed
drugs because of their need for therapy [4], ensuring
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equivalence or “exchangeability” [5] between the groups
under study at baseline is a first step to a valid assess-
ment of the treatments’ comparative safety and effective-
ness. Further, when there are multiple available treat-
ments, the usual pairwise comparison study is insuffi-
cient to give meaningful information to regulators, pol-
icymakers, and clinicians: for them, a study that com-
pares three, four, or more active treatments to each other
can help identify the best choices from a wide panel of
available treatments [6].

Propensity scores have been widely used in epidemi-
ology [7] to control for confounding. For each treatment
under study, a patient’s propensity score is simply his
or her predicted probability of receiving that treatment
(as opposed to the other treatments under study), as a
function of all confounding factors measured for that pa-
tient [8]. Propensity scores have been shown to be “bal-
ancing scores”, meaning that if the score is correctly spec-
ified and patients are correctly matched, then the fac-
tors that make up the score will be on average balanced
between the treatment groups. This balancing removes
confounding, since it creates treatment groups that are
comparable at baseline.

Matching two groups of patients is not complex, though



a brute-force approach to it becomes less practical as the
number of patients increases. Adding additional treat-
ment groups makes a brute-force approach infeasible; in-
deed, with four groups of patients and just 5,000 patients
in each group, a brute-force algorithm would have to
test 625 trillion possible matched sets. Similarly, a naive
greedy approach used for two groups loses correctness
when considering more than two groups.

In this paper, we propose and evaluate an efficient al-
gorithm for simultaneously matching three or more groups
of patients by any normalized score. Specifically, we can
match on propensity score, generalized propensity score,
or any number of normalized patient characteristics such
as age, weight, or height.

In section 2, we discuss similar multi-treatment ap-
proaches, as compared to the matching approach. Sec-
tion 3 formally describes and discusses the problem. Sec-
tion 4 defines both the brute force solution and pseu-
docode for our kd-tree algorithm. A proof that the kd-
tree algorithm correctly matches brute force is given in
section 5, followed by theoretical and empirical results in
section 6. We conclude in section 8.

2. Related Work

Rosenbaum and Rubin’s original definition of a propen-
sity score defined the probability of a single binary treat-
ment choice [8, 9, 10]. Continuous treatments, ordinal,
and categorical treatments were not specifically consid-
ered with more than 2 groups.

Imbens [11] proposed the generalized propensity score,
an extension of Rosenbaum and Rubin’s definition for
multiple levels of treatment. This approach allows for es-
timation of average outcomes using only the generalized
propensity score for three or more levels of treatment.
Feng, et al, [12] discuss Imbens’ approach to estimate
treatment effect through weighting and regression ad-
justment specifically in the context of a multi-categorical
treatment.

The literature describing the generalized propensity
scores notes methods for regression, stratification, and
weighting using the GPS. However, Imbens notes that
“matching approaches ... appear less well suited to the
multi-valued treatment case” [11]. This may be in part
due to the computational challenges of matching with
more than two groups.

If using a matching caliper to restrict match distance
and thereby eliminate patients that do not resemble pa-
tients in other treatment groups, then a benefit of match-
ing is that it restricts the estimation sample to only pa-
tients who could plausibly have received any of the treat-
ment options under study. Those who were not ”at risk”
for all of the treatments will be excluded from the anal-
ysis. This method is similar in concept the design of
clinical trials, in which participation is limited to only
those patients who could reasonably be randomized to

any of the treatments. Matching, therefore, will often
give a more valid estimate of the treatment effect of in-
terest – the average effect in patients that could have re-
ceived either treatment – but may do so at the cost of
precision. This is particularly important when treatment
effects are not homogenous across the population, such
that the sub-population of inference becomes an impor-
tant analytic choice.

We designed our matching algorithm, therefore, to
accept and match on existing propensity score and gen-
eralized propensity score definitions as well as any num-
ber of normalized facets of the data set considered.

3. Objective

Informally, we would like to match participants of
similar traits across multiple treatment groups for a given
study. Requiring all matched sets to include a patient
from each treatment group will guarantee that only pa-
tients that could have reasonably received any of the
available treatments will be included in the matched sam-
ple. Closest or smallest matches—matches where the par-
ticipants from each group are the most similar—are con-
sidered first, then matches of increasingly larger sizes,
until either all points are consumed or a threshold of par-
ticipants is included.

To define the problem formally, let us construct the
following notation: let k be the number of patient groups
considered, d be the number of facets to match per pa-
tient, and n be the number of patients per group. For
simplicity in analysis, we assume equal-sized groups;
however, in practice, this assumption need not hold.

We define a patient as a d-dimensional point in the
real numbers. Each treatment group is defined as a set,
G1, ..., Gk, with n points each. The set of all patients, P , is
the union of all treatment groups, and contains kn total
points. Next, we define a match m as a collection of one
point from each Gi as follows: m ⊆ P such that ∀Gi, |m∩
Gi| = 1. We define M to be the set of all such matches.
Note that the size ofM is exponential with respect to n,
that isM contains nk matches.

Since we want to find the smallest matches, we must
define this term specifically. Intuitively, we would like
to pick matches such that all the points are close to-
gether and or alternatively, the size of the grouping in
d-dimensional space looks to be the smallest. Therefore,
let us define a function size(m) as a measurement func-
tion on the matches

size(m) :M→ R.

We discuss in the next section possible concrete defi-
nitions of this function, but we note now that it must
be well defined: any match must have an unique mea-
sure. Specifically, m1 = m2 implies size(m1) = size(m2).
Now, let us define M as a match covering of P such
that M has n total matches and each point in P is used
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only once in M. Without loss of generality, let us as-
sume that M is sorted on the size of matches. Specifi-
cally, for any two matches mi, mj in M, where i < j then
size(mi) ≤ size(mj). Next we define an ordering <M on
match coverings such that M0 <M M1 if for some index
i into the sorted match coverings, size(m0,i) < size(m1,i)
and for all smaller matches j < i, size(m0,j) = size(m1,j),
where m0,j is the j-th element of M0 and likewise for M1.

We must find the minimal match covering, M0, such
that ∀i > 0, M0 <M Mi. Therefore, it suffices to extract
matches from P in order of size, smallest to largest, until
no points are left.

3.1. Definition of Smallest Match
We must first consider an appropriate definition of

the size(m) function, as described above. We consider 2

possibilities: perimeter and sum of squared distances to
the centroid of the points in m. The choice between these
definitions depends on consistency in determining the
size given points in different orders (order independence
of the points) and complexity to compute.

3.1.1. Perimeter
The perimeter of a match is point-order-independent

and unique in defining match size with 3 or fewer points,
since any path through the points will yield the same
perimeter. Therefore for 3 points, it only requires 3 dis-
tance calculations, making it constant-time to compute.

For more than 3 points, perimeter is no longer point-
order-independent since different routes through the points
would arrive at different perimeters, as shown in Fig-
ure 1. One solution is to require size(m) be the perime-
ter of the smallest k-gon formed by the points. How-
ever, there are (k− 1)!/2 possible k-gons for each match
m, and thus the naive method for finding the minimal-
perimeter order would take factorial-time in k. More
clever routines to find such an ordering also seem un-
likely as the problem reduces to the notoriously difficult
NP-hard Traveling Salesman Problem [13]. Therefore, we
limit the use of perimeter to the case when k ≤ 3.

(a) perimeter x (b) perimeter y (c) centroid

Figure 1: Two different perimeters (x 6= y) and distance to the centroid
for 6 points.

3.1.2. Distance to the Centroid
We propose using distance to the centroid of the points

instead of perimeter, since the centroid is neither depen-
dent on the ordering of points nor the dimensionality of
the space. Likewise, distance to the centroid can be cal-
culated in O(k) time with respect to the number of points
per match.

For a d-dimensional space and k points p1, ..., pk per
match, the centroid of a match m is defined as

c(m) =
1
k

k

∑
i=1

pi.

Our size(m) function, using sum of squared distances to
the centroid, is defined as

size(m) =
k

∑
i=1

d

∑
j=1

(
pi,j − cj(m)

)2 ,

where cj and pi,j define the j-th dimension of c and pi,
respectively.

This definition is not only linear on both k and d, but
also captures the semantic definition of size: it measures
how far away the points are from their average, the cen-
troid. Unlike perimeter, with this definition of size(m),
the points will be mutually close to each other, discrimi-
nating against a closer grouping with one or two outliers.
Specifically, sum of squared distances to the centroid will
favor equilateral triangles over highly acute and obtuse
triangles.

4. Matching Algorithms

We start by examining existing two-group and k-group
solutions, followed by a naive algorithm to perform true
k-way k-group matching and our kd-tree algorithm.

4.1. Two-group Matching Algorithms
Rubin [14, 15] proposed two approaches to two-group

matching: mean-matching and pair-matching. The mean-
matching approach matches subjects from two groups
into a match covering M such that the average size(m)
is minimized for all m ∈ M. Rubin provides a greedy
approximation algorithm that, for each pi ∈ G1, chooses
the pj ∈ G2 such that the average size(m) is minimized
for previous matches m0, ..., mi. The pair-matching ap-
proach, which we utilize, matches participants subject by
subject. This method is both computationally faster than
mean-matching and allows for extra analysis, including
confidence limits, tests of significance, and the ability to
study each match individually.

The initial definition of pair-matching is also a greedy
approach. Rubin’s algorithm either randomly permutes
or sorts the first group G1 by the facet to match, X, low-
to-high or high-to-low. It then performs only one pass
through the participants pi in G1, matching each with

3



the closest point in G2. An example pseudocode of his
algorithm can be seen in Algorithm 1. This particular
portrayal is a O(n2) implementation, however a more so-
phisticated algorithm will achieve the greedy approach
O(n log n). According to Rubin’s description, neither of
these approaches produces the global in-order smallest
pair matching; they rely on the initial ordering of G1.

Rosenbaum [16] extended the work to utilize an opti-
mal bipartite matching, which finds the match covering
M that minimizes ∑ size(m) for all m ∈ M. By definition,
a bipartite matching only matches across two groups.
Both of these methods, therefore, are unscalable to larger
k without significant modification.

Algorithm 1: Pseudocode of Rubin’s pair-matching
algorithm. sort may be either low-to-high on X,
high-to-low on X, or random.

Input: 2 sets of n points: G1, G2
Output: set of n matches of 2 points each

1 G1 = sort(G1)
2 foreach pi ∈ G1 do
3 smallest = MAX
4 foreach pj ∈ G2 do
5 if size(m = {pi, pj}) < smallest then
6 msmallest = m
7 smallest = size(m)

8 Mans ← msmallest
9 remove pi, pj ∈ msmallest from G1, G2

10 return Mans

4.2. Existing k-group Algorithms
Current k-group matching algorithms utilize a pair-

matching technique to match both in and across treat-
ment groups. The standard approach [17] uses non-bipartite
matching, in which the two-group requirement is relaxed
and pairings are allowed across two of many groups.

Lu et al. [17] discuss using non-bipartite matching to
pair participants for various study settings. One param-
eter to their solution is our k-group matching problem.
Their algorithm performs well, achieving a time com-
plexity of O((kn)3) through the use of Derigs’ nonbi-
partite matching FORTRAN implementation [18]. How-
ever, it is impractical for larger data sets and ill-suited for
the k-way matching problem. First, it requires O((kn)2)
memory to store the computed pair-wise distance ma-
trix, which is prohibitive as k and n become moderately
large, such as 5000 patients in 3 groups. Derigs’ imple-
mentation also requires that all distances must be inte-
ger values, forcing reduced precision. Most importantly,
however, each participant is paired with only one other
member in the remaining k− 1 groups rather than with
one per group. A k-way matching is the only way to

guarantee that the patients in the matched sample have
clinical equipoise with respect to all treatments.

Although a k-way k-group matching seems simple
given the above definition and algorithms, it is worth
noting that simple, intuitive solutions may not yield a
correct answer for more than two groups. For example,
a natural first approach for 3 groups might be to start
with any point in G1, find its closest neighbor in a differ-
ent group, and then find its closest neighbor in the third
group. Hade [19] introduced triplet matching using this
approach. She compares two methods of 3-way match-
ing: the nearest neighbor approach and a sub-optimal
matching approach. Both rely on the assumption that
two closest pairs will form a closest triple. Figure 2 il-
lustrates the incorrectness of these and other similarly
“greedy” approaches. A match made with the closest
neighbors to a starting point does not necessarily result
in the smallest match for that point.

33

5

p
19

p
20

p
6

1

Figure 2: The blue (triangle) and green (diamond) points are closer to
the red (square) point in match m on the left, compared with match m′
on the right. However, size(m) ≈ 16.6667 and size(m′) ≈ 12.6667.

4.3. Brute Force Algorithms
The robust naive approach, therefore, would include

forming all potential k-way matches, sorting them based
on the size of the match, then picking matches in or-
der ensuring that no person is used twice. Assuming
there are n participants in each group, this will lead to
nk total matches for k groups, requiring O(nk) space and
O(nk log n) time to process the input since sorting the
matches is necessary. If the trial contains 300 participants
in each of 3 groups, that would be 1003 = 1, 000, 000
matches to store. As n grows, current hardware becomes
unable to store the data efficiently.

An alternative brute force algorithm exists that re-
quires only O(n) space, but has an increased time com-
plexity of O(nk+1). This algorithm considers all nk matches
to find the smallest, removes those k points from the
pool, and repeats until n matches are made. This ap-
proach can be seen in Algorithm 2.

4.4. KD-Tree Algorithm
Our algorithm reduces the brute force cost by consid-

ering only matches within a neighborhood of each point.
By searching this neighborhood and ignoring all other
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Algorithm 2: Brute Force Algorithm requiring O(n)
space, O(nk+1) time

Input: k sets of n points: G1, ..., Gk
Output: set of n ordered smallest matches of k

points each

1 for i = 1 : n do
2 smallest = MAX
3 msmallest = null
4 foreach p1 ∈ G1 do
5 foreach p2 ∈ G2 do
6 ...
7 foreach pk ∈ Gk do
8 if

size(m = {p1, p2, ..., pk}) < smallest
then

9 msmallest = m
10 smallest = size(m)

11 Mans ← msmallest
12 remove p1m, p2m, ..., pkm from G1, G2, ..., Gk

13 return Mans

points, we seek to reduce the time complexity in the av-
erage case. To find a neighborhood, we first consider
an approximate best match for a point in G1: the closest
points of Gi for 2 ≤ i ≤ k. Our algorithm uses kd-trees,
with an expected case look-up time of O(log n), to find
these k− 1 close points.

Kd-tree data structures store points in arbitrary di-
mensions in a binary tree as described in [20]. For the
2-dimensional case, [20] showed that the time complex-
ity for building a kd-tree is O(n log n), with expected-
case nearest neighbor lookup cost O(log n) and worst
case O(n1−1/d) for d dimensions. Therefore, in the 2-
dimensional case, any request to find the nearest patient
will be O(log n) in the average case, with the cost of mak-
ing all kd-trees O(kn log n). The algorithm also uses Pri-
orityQueues as implemented in Java. PriorityQueues
can be queried and added to with a time of O(log n) [21].

Algorithm 3 provides the pseudocode for our kd-tree
algorithm. A kd-tree Ti containing the points in Gi is
created for i = 2, ..., k. The algorithm then creates a Pri-

orityQueue for matches ordered on size(m) and an array
to store the final matches. Starting with G1, the algorithm
finds the smallest matches within a given search radius
for each point pi ∈ G1, using the addPutativeMatches

subroutine described below. Then, the algorithm con-
siders all matches found, presorted ascending accord-
ing to size(m) due to the PriorityQueue construction.
For each match, if all its points have not been used to
make a match which has already been considered, then
this match is a smallest match. The algorithm stores
the match and removes these points from their respec-
tive kd-trees. Alternatively, if any of the points have

Algorithm 3: kd-tree algorithm
Input: k sets of n points: G1, ..., Gk
Output: set of n ordered smallest matches of k

points each

1 for i← 2 to k do
2 Ti = makeKDTree(Gi)

3 pq = new PriorityQueue
4 foreach pi ∈ G1 do
5 addPutativeMatches(pq, pi, T2...Tk)

6 while pq not empty do
7 m = pq.poll()
8 if all pi ∈ m are unused then
9 foreach i ≤ k do

10 Ti.remove(pim)

11 Mans ← m
12 else
13 if p1m ∈ m ∩ G1 is unused then
14 if no more matches available then
15 addPutativeMatches(pq, p1m, T2...Tk)

been used for another match, the match is discarded.
When all matches in the queue for any pi ∈ G1 have
been exhausted, addPutativeMatches is called to add
more matches onto the queue with the remaining points.
When this process terminates, we have the n smallest
matches.

addPutativeMatches as outlined in Algorithm 4, starts
with the given pi ∈ G1 and produces the 10 smallest
matches for that point. First, it performs kd-tree queries
to find a pj ∈ G2 closest to pi, a pl ∈ G3 closest to pj, and
so on for all subsets of P , using Euclidian distance. These
points together become an initial naive smallest match m,
with size(m) as the sum of squared distance to the cen-
troid of the match. Let max(m) denote the maximum dis-
tance from a point to the centroid in this match. The algo-
rithm queries each kd-tree Ts, 2 ≤ s ≤ k, for points pr ∈
Gs such that dist(pr, pi) ≤ search = k × max(m). These
points pr are then used to create all possible matches in
this search radius with pi. The smallest 10 matches mt
with size(mt) ≤ size(m) are returned.

We only consider the smallest 10 matches from ad-

dPutativeMatches, since the execution time asymptoti-
cally converges as the number of matches returned in-
creases as shown in Figure 3.

5. Proof of Equivalence

To show that this algorithm produces identical match-
ings to brute force, it suffices to show that for any given
point in G1, the smallest match for that point will re-
side in the search radius considered for that point. Since
all pi ∈ G1 will be considered, we are guaranteed to
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Algorithm 4: addPutativeMatches subroutine
Input: PriorityQueue pq, current point p1 ∈ G1,

kd-trees for each group T2, ..., Tk
Output: list of 10 smallest matches for point p1

1 for i← 2 to k do
2 pi = Ti.getnearest(pi−1)

3 small = size(m = {p1, p2, ..., pk})
4 search = getSearchRadius(small)
5 tq = new PriorityQueue
6 tq.add(m)
7 for i← 2 to k do
8 Li = Ti.getnearest(pi−1, search)

9 foreach p2 ∈ L2 do
10 foreach p3 ∈ L3 do
11 ... foreach pk ∈ Lk do
12 dist = size(m′ = {p1, p2, ..., pk})
13 if dist ≤ small then
14 tq.add(m′)

15 for i← 1 to 10 do
16 m = tq.poll()
17 if m not null then
18 pq.add(m)
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Figure 3: Empirical results varying the number of possible matches
returned by addPutativeMatches.

Parameter Test Values
Number of Treatment Groups (k) 3-5
Number of Facets Per Patient (d) 2-4
Participants per Treatment Group (n) 50, 100, 200,

300, 400, 500,
750, 1000

Table 1: Empirical test configurations.

end with the smallest match for each pi. When points
are used, the process will be repeated with larger search
radii. Therefore, to prove the equivalence of the kd-tree
algorithm, we will show that for an initial neighborhood
of a match containing pi, the smallest match will re-
side in that neighborhood for both definitions of size(m):
perimeter and sum of squared distance to the centroid.

5.1. Perimeter
Theorem 1. Given an initial match m containing point pi ∈
G1, which contains random points pr j, one per Gj with j ≥ 2,
the perimeter will define the size of the match. Let us assume
that size(m) = q ∈ R. Our search radius will then be the
disc centered at pi with radius q

2 . This area will contain the
smallest match for pi.

Proof. For contradiction, assume there is one point pj that
resides outside of this disc that makes a smaller match
m′ for pi. We note that the euclidean distance from pi
to pj is greater than q

2 . Therefore, the smallest match m′

containing both points would be at least colinear with
each point at an endpoint, making size(m′) > 2 ∗ q

2 =
q, however size(m) = q and therefore m′ is larger than
m.

5.2. Centroid
Theorem 2. Given an initial match m containing point pi ∈
G1, which contains random points pr j, one per Gj with j ≥ 2,
the sum of squared distances to the centroid will define the size
of the match. Our search radius will be the disc centered at pi
with radius k ∗ s where s is the max distance to centroid. This
area will contain the smallest match for pi.

Proof. We want to find r such that given m with k points,

s = max

(
d

∑
l=1

(pl − cl(m))2

)
, ∀p ∈ m,

where s is the maximum Euclidean distance to centroid.
a) First let us discuss size(m) ≤ ks2. In our definition

of size(m), we know that

size(m) =
k

∑
l=1

(pl − c(m))2 ,

where each |pl − c(m)| ≤ s, since s is the maximum.
Therefore this inequality is trivially true.

b) Assume there exists pj outside of our radius r, such
that pj, pi ∈ m′. We will call the centroid of this match
c(m′). Let us define x to be the distance from pi to c(m′)
and y to be the distance from pj to c(m′). Note that x +
y ≥ r, since pj and pi are at least a distance of r apart.
Also, size(m) ≤ ks2 by part a. Therefore, to show that
size(m) ≤ size(m′) it suffices to show that ks2 ≤ x2 + y2,
since then we will have

size(m) ≤ ks2 ≤ x2 + y2 ≤ size(m′).
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Let us assume the minimal x + y, namely that x + y = r.
Then, it is clear that r2

2 ≤ x2 + y2 ≤ r2. Now, to show
ks2 ≤ x2 + y2, it suffices to show that ks2 ≤ r2

2 .

ks2 ≤ r2

2

ks2 ≤ k2s2

2
2 ≤ k.

Therefore for all m′ with at least one point outside of
r = ks2, size(m′) ≥ size(m), where k ≥ 2.

6. Theoretical Results

We first discuss theoretical results for the algorithm,
both in the worst case and the average expected case,
followed by the empirical study results.

6.1. Worst Case
Initially, we consider the 3-group case in 2-dimensions.

The time complexity of the addPutativeMatches subrou-
tine in Algorithm 4 is an integral part of the complexity
of the algorithm. The time complexity of addPutative-
Matches is

Tapm = O(n2 log n + 2n3/2 + 2n + 21 log n− 2)

= O(n2 log n).

We divide the kd-tree algorithm into two indepen-
dent parts to simplify the analysis. part1 consists of the
initial n calls to addPutativeMatches, while part2 con-
tains the main loop of the algorithm. The time complex-
ity of each part is

Tpart1 = O
(
nTapm

)
= O(n3 log n)

Tpart2 = O
(

n3 log n + 2n log n +
n3 − n

10
Tapm

)
= O(n5 log n),

with the algorithm’s total time complexity

Tkdtree = Tpart1 + Tpart2 = O(n5 log n)

Generalizing the worst case analysis to an arbitrary
number of dimensions and groups, we derive the time
complexity of each part as follows:

Tapmk,d = O(nk−1 log n + kdn2 + kdn)

Tpart1k,d = O
(

nTapmk,d

)
= O

(
nk log n + kn2 log n + kdn2

)
Tpart2k,d = O

(
n2k−1 log n + knk+1 log n + kdnk+1

)

Assuming a relatively small k and d, this leads to an over-
all time complexity of

O(n2k−1 log n).

Fixing n, as k and d increase, the complexity will in-
crease exponentially with respect to k, but only linearly
(in the insignificant terms) with respect to d. The com-
plete derivations are available in the Appendix.

6.2. Improved Worst Case
Ignoring space constraints, we could store all pre-

vious match sizes seen to reduce the cost of duplicat-
ing calculations in addPutativeMatches. Therefore, if a
match has already been computed, addPutativeMatches
becomes a constant-time lookup. This would require
O(nk) space to store all possible matches, but would re-
duce the re-call time complexity cost of addPutative-

Matches to O(1). Therefore, our partial time complexities
become

Tpart1k,d = O
(

nk log n + kn2 log n + kdn2
)

Tpart2k,d = O
(

nk log n + (k− 1)n log n

+
nk − n

10
Tapmk,d

)
= O

(
nk log n

)
,

with the total time complexity reducing to

Tpart1k,d + Tpart2k,d = O(nk log n).

6.3. Expected Case
In order to evaluate an average case complexity of our

kd-tree algorithm, let us define the following assumption
for the distribution of points over the space.

Assumption. We have an even scattering of points with
a uniform density. Specifically, ∃δ such that ∀ε-sized ar-
eas, there are δεn points in that region. That is, the num-
ber of points in a region is in constant proportion to the
area of that region. The search radius of an initial guess
for any point pi is proportional to the density of points
available in that area, and therefore there will be a con-
stant number of points within that fixed search radius.

This assumption eliminates the worst case, in which
each Gi’s points must be grouped together or coincident,
forcing the algorithm to include all possible matches in
each search radius, then make and subsequently discard
nk−1 matches as invalid. Assuming a δ-sized proportion
of the total points of each Gi to be included in any ε-
sized area will guarantee that any small search radius
will not contain most or all the points from any Gi, only
a constant amount proportional to the area.

Under this assumption, the addPutativeMatches sub-
routine completes in constant amortized time, since for
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each fixed search radius it must only consider a constant
number of points. Noting that kd-trees provide average
case O(log n) lookups in 2 dimensions, but are only guar-
anteed O(dn1− 1

d ) in higher dimensions [22], we break the
expected case complexity into 2-dimensional and multi-
dimensional costs.

6.3.1. 2-dimensional case
In two dimensions, we find that

Tapmk,2 = O(4(k− 1) log n + log n) = O(k log n)

Tpart1k,2 = O
(

nTapmk,2

)
= O(kn log n)

Tpart2k,2 = O (n log n + nk log n)

= O((k + 1)n log n)

with the total time complexity reducing to

Tkdtree = Tbuildkds
+ Tpart1k,2 + Tpart2k,2

= O(kn log n).

6.3.2. d-dimensional case
However, for the general case of d-dimensions, the

algorithm is not expected to perform quite as well. We
find that

Tapmk,d = O(2(k− 1)dn1− 1
d + log n) = O(kdn)

Tpart1k,d = O
(

nTapmk,d

)
= O(kdn2)

Tpart2k,d = O (n log n + nk log n)

= O((k + 1)n log n)

with the total time complexity reducing to

Tkdtree = Tbuildkds
+ Tpart1k,d + Tpart2k,d

= O(kdn2).

7. Simulation Study

We conducted a simulation study comparing our kd-
tree algorithm against the space-efficient brute force al-
gorithm to supplement our theoretical analysis.

7.1. Experimental Setup
This experiment was conducted on 1.6GHz dual-core

AMD Opteron processors with 3GB of RAM running
Ubuntu Linux 10.04. Both algorithms were coded in Java,
compiled and run using the OracleTM JavaTM SE run-
time environment version 1.6.0 26, with the kd-tree al-
gorithm utilizing the WLU kd-tree implementation [23].
Table 1 shows the configurations for each experimental
run, where the participants are sampled by a Gaussian
distribution over the varying confounding factors. Each
test was repeated 50 times for each algorithm.

7.2. Simulation Results
Our kd-tree algorithm performs as expected as the

number of participants increases. For example, for three
groups of 1000 participants, the kd-tree algorithm matches
all participants on propensity score in 4.5 seconds versus
the brute force algorithm’s 17.5 hours as depicted in Fig-
ure 5. In this fixed k and d example, the kd-tree algorithm
compute time grows quadratically as n varies from 50 to
1000. Similarly, the brute force algorithm’s compute time
grows relative to n4 over the same interval.

Varying the number of facets matched, d, does not
significantly alter the compute time of either algorithm,
as shown in Figure 4(b). This behavior is expected, since
d is not a dominant term in the complexity of either algo-
rithm. However, varying the number of groups, k, with a
constant d shows significant slowdown. For 5 groups, the
kd-tree algorithm completed the matchings two order of
magnitudes faster than the brute force algorithm.

Precisely, as the number of participants grows, the
kd-tree algorithm grows relative to n2 as expected. Like-
wise, the brute force algorithm grows relative to nk+1.
Therefore, as the number of participants grows, the speedup
over brute force grows significantly, from 17x for 50 par-
ticipants per group to 13, 897x for 1000. The results, in-
cluding all runs in which brute force completed on our
cluster within the allotted CPU time of 168 hours, are
depicted in Figure 4 and enumerated in Table 2.
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Figure 5: Average running time for our kd-tree implementation vs the
space-efficient brute force implementation for up to 1000 participants in
3 groups considering 3 propensity scores. Note the x-axis is log-scale.

8. Conclusion

Given k sets of participants, matching against d traits,
we have defined an algorithm that can produce the matches
in an expected O(kdn2) time assuming the traits are uni-
formly distributed. Moreover, since our algorithm only
uses kd-trees, a list of final matches, and an intermediary
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Figure 4: Average running time for our kd-tree implementation vs the space-efficient brute force implementation for (a) up to 300 participants in
3 to 5 groups considering 3 facets and (b) up to 500 participants in 3 groups considering 2-4 facets. Brute force for the results not shown did not
complete within the allotted time. Note the x-axis is log-scale.

Num Participants Kd-tree Algorithm Brute Force Algorithm Speedup (kd-tree / brute force)
3 groups 4 groups 5 groups 3 groups 4 groups 5 groups 3 groups 4 groups 5 groups

50 29.15 354.73 4.02× 104 518.45 2.25× 104 1.08× 106 17.79x 63.42x 26.80x
100 71.56 1487.52 4.15× 105 6814.07 6.82× 105 6.67× 107 95.22x 458.22x 160.85x
200 192.64 5238.16 - 1.06× 105 2.10× 107 - 551.57x 4013.17x -
300 358.60 9134.80 - 5.40× 105 1.60× 108 - 1506.61x 17530.88x -
400 661.36 - - 1.66× 106 - - 2509.11x - -
500 956.00 - - 4.13× 106 - - 4320.33x - -
750 2135.27 - - 1.99× 107 - - 9332.74x - -

1000 4519.80 - - 6.28× 107 - - 13897.70x - -

Table 2: Average time (ms) to match all partiicpants with the kd-tree and brute force algorithm for 3 facets, including the speedup of the kd-tree
algorithm over the brute force algorithm.
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list, we only use O(n) space. While our approach does
not match the performance of brute force in the worst
case, we are no longer exponentially constrained by the
number of groups in the expected case. We have sub-
stantially reduced the space and time required to com-
pute complex, multi-group matches; we feel that this
methodology can help clinicinas, regulators, and patients
make more informed decisions based on the comparative
safety and effectiveness across the full range of available
treatment options.
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