Modeling Voting Machines

John R Hott
Advisor: Dr. David Coppit

December &, 2005

Abstract

Voting machines provide an interesting focus to study with formal methods. People want to know
that their vote is counted and that the voting machines they are using actually work the way they are
supposed to, especially in the age of closed-sourced machines. This project uses PVS to formalize the
requirements set forth by the Election Assistance Commission so that this specification can be used in
the future to create voting machines with a provable base specification or test current and new voting
machines to ensure they function properly under all circumstances. In the end, the model cannot be fully
completed due to model size explosion and the need to formalize too much. Insights are given into the
PVS verification tool, better ways and tools that can be used to specify the voting machine requirements,
and where this specification can be used in the future.

1 Introduction to Electronic Voting

Many states are beginning to use electronic voting machines to capture votes on public election days. This
enhances the availability of handicapped accessible voting mechanisms, and keeps human intervention out of
vote counting (for the most part), hopefully allowing votes to be more accurate. Currently the United States
Election Assistance Commission is working on specifying the requirements of polls and voting machines,
and what should happen on voting day. They are updating these requirements to include electronic machines,
and include the hardware and software guidelines and requirements of these machines to be certified for use
in polls. Using Formal Methods and building a model from these requirements would be a manufacturers
best first-move toward building a compatible system efficiently.

2 Why Formalize?

As the US depends more on electronic voting machines, it is imperative that the machines perform correctly.
It is also imperative to ensure that the requirements make it into the actual design of systems. Currently, the
requirements for voting software correctness only require a source code review and a check to ensure the
system flows like the high level design created by the developer. This checking would be more sufficient if
it included the comparison and proofs of a model of the software given.

3 What To Formalize?

The portion of the Voluntary Voting System Guidelines set out by the US Election Assistance Commission
that would need the most assurance of correctness, at least to match their model, would be Section 2.4, the

functions that must happen at the polls on voting day, including Opening the polls, activating the ballot,
casting of ballots, and the closing and counting of the polls. Of the guidelines, this section seems to be the
most critical, because it includes everything that happens on voting day and the security involved in that
voting.

Certain properties that should be formalized and proved include, but are not limited to,
only_one_ballot_per_eligible_voter,
voter_can_only_vote_on_ballot_entitled to,
voter_cannot_vote_twice,
voter_can_select_party_affiliation_votes (which would cast a vote for every member of that
party),
portions_of_ballot_voter_not_entitled_to_are_disabled,
system_cannot_reveal_how_a_particular_voter_voted,
voter_can_vote_during_failure and voter_can_vote_without_network in accordance with power
failures and telecommunications failures (Section 2.4.3.2.e-f),
voter_can_only_make_legal_combination_of_choices,
voter_cannot_overvote,
voter_must_review_ballot_before_submit,
voter_cannot_access_unauthorized_information,
voter_notified_on_submit,
votes_stored_represent_votes_cast,
vote_cannot_change_after_submit,
ballots_unaccessable_until_polls_close, and
cannot_cast_ballots_after_polls_closed.

Each of these properties is essential to ensure proper voting, and likewise, each can crop up in a poorly
designed system, which dictates that they should be formalized and checked so that a system build with
them cannot violate them. Also, after formalizing these ideas, that formal specification can be translated
into code fairly quickly and efficiently.

4 Method

PVS was chosen as the method with which to formalize this voting machine specification. Upon writing and
planning the system, it appears that a lighter-weight tool, such as Alloy, should have been chosen, but that
will be described more later. Also, there is a method to the way the system should be built. The model should
be built up incrementally. This system started with just Person and Ballot types and a vote function that
took a person and gave their ballot. It was expanded to include the casting function and a store to keep a
record of the votes cast. Then expanded to a way to review ballots, the inclusion of poll states and a poll
worker, and finally to part of the user interface. Upon including the user interface, the model started to blow
up in size, and so only part of it was included.

5 Model

The model itself is both simple and complex. It includes an abstract non-empty type, left abstract because
it cannot be modeled. This is of course, Person. Poll_Worker and Eligible_Voter were extended from
the Person type because there are people that work at polls and that can vote, but not every person can vote.
Candidate should have been of type Person, but to ease the proofs, it was declared an enumerated type

with the candidates up for election. In my model, I used Washington and Monroe. Other enumerated types
are Poll_State that tells whether polls are open or closed, the Operation_State which is unused but tells
whether the system is under normal or failure mode of operation, and UI_Input which tells what input the
user has issued: cancel, submit, and others.

There are also a few record types defined. Ballot is the basic record type, which has a selection of
Candidate in it. This could be expanded to include President, Vice President, etc, but for simplicity of our
model, we just have one selection the user can make. Ballot_Store is a step up from ballots, which is a
record type that contains a count of the ballots it contains and a relation that contains all the ballots, mapped
number to ballot, that the store contains.

5.1 Conventions

Some conventions must be made in order for our model to actually work. They are basically empty types,
which means that either nothing is returned because it should not be allowed or not be counted. Blank, that
is a ballot, is one of these conventions, because if a user doesn’t submit they still have to return a ballot but
it must not have a vote. Others include empty ballot stores and an empty candidate.

5.2 Functions

Many simple functions build up to the vote function that will be described in the next section.
Entitled_Ballot (v: Eligible_Voter): Ballot is the first function, and it returns the ballot that the
eligible voter is entitled to. It is left undefined because it cannot easily be modeled. Similar to this function
is Get_Candidates_In_Voters_Choice_Party(v: Eligible_Voter): Candidate which takes a voter
and returns the candidates in their party of choice. This design decision was taken because the initial design
had People and Candidates having Parties, but the description of this function became too complex and
this one was chosen. The simple choose function, choose (v: Eligible_Voter): Ballot, lets the voter
choose what they want to pick on the ballot and return the ballot they have chosen. At the basic level, this is
how a user votes.

5.3 Voting
To vote, a person must be an Eligible_Voter. The person calls the vote() function,

vote (v: Eligible_Voter): Ballot =
voter_review (choose (v), submit)

which says that voting returns a ballot that the person chooses, however, they must choose who they want
to vote for and review the ballot, pressing submit, for the ballot to be counted. This review function, shown
below, returns the ballot the voter chose if they input submit, but if they don’t, the blank ballot is returned,
which means they’re vote is not counted.

voter_review(b:Ballot, ui: UI_Input): Ballot =
IF ui = submit THEN
b
ELSE
blank
ENDIF

This voting scheme must be done in mass, by multiple voters, and it has to be stored, or else the voting
machine would be useless. The Cast_Ballot function below describes how this process takes place.

Cast_Ballot (ps: Poll_State, voter: Eligible_Voter, bs: Ballot_Store): Ballot_Store =
IF ps = closed THEN
bs
ELSE
(# count := bs‘count + 1, ballots := bs‘ballots WITH [(bs‘count) := vote(voter)] #)
ENDIF

Casting a ballot can only happen with an eligible voter, but it can also only happen if the polls are open.
So, if the polls are closed the new vote is not counted and the old ballot store is returned. If the vote can be
counted, the count in the store is updated and the user’s vote is added to the store’s ballots relation.

5.4 Review

The Review_Ballots function is similar to the Cast_Ballot function.

Review_Ballots(ps: Poll_State, bs: Ballot_Store, person: Person): Ballot_Store =
IF ps = closed AND person = Poll_Worker THEN
bs
ELSE
empty
ENDIF

It takes a Person rather than an Eligible Voter because the Poll Worker can be just a Person. Also, this works
opposite of the Cast_Ballot function. If the polls are closed and the person is the poll worker, then they
can see the ballot store and it is returned. Otherwise, either the polls are open or there is a voter trying to
access the votes, and they only get an empty store because they are not allowed to see the actual store.

6 Theorems

As the model was growing, lemmas were added based on the requirements of the Election Accessibility
Commission to ensure that the model worked according to their guidelines. Each of these lemmas could
be easily proven with PVS’s grind function and one with induct-and-simplify. So, the proofs are
uninteresting and can easily be recreated, so they will not be included. Also, we will examine some of the
more interesting lemmas, but we will not go into detail over all of them since there are 16 proofs, which are
too many to cover in great detail.

6.1 Time to Cast and Review Ballots

ballots_unaccessable_until_polls_close: LEMMA
FORALL (bs: Ballot_Store, ballot_num: nat):
Review_Ballots (open, bs, Poll_Worker) = empty

cannot_cast_ballots_after_polls_closed: LEMMA
FORALL (voter: Eligible_Voter, bs: Ballot_Store):

(Cast_Ballot (closed, voter, bs)) ‘count = bs'‘count AND
(Cast_Ballot (closed, voter, bs) ‘ballots = bs‘'ballots)

These two lemmas are very interrelated. They both deal with the passage of time, and ensuring that the
model performs correctly under different times. The first lemma proves that the ballots can not be accessed
until after the polls have closed. For every store of ballots, if the Poll_Worker tries to review the ballots
while the Poll_State is open, they should only get the empty store, which means that they cannot access any
ballots. One expansion would be to add Review_Ballots(closed, bs, Poll_Worker) = bs, which
would check the opposite, that if they review the ballots during the closed state, they will get the ballot store
to review. It, however, seemed simple, and was excluded.

The second lemma is similar to the first. It states that if a voter votes while the polls are closed, that the
count and ballots of the ballot store do not change. That is, that the voter’s vote is not counted. The opposite,
voting in an open state, is not checked here because it is included in the next lemma we will look at, ballots
stored represent the ballots that were cast. Both of these were easily proven with grind.

6.2 Ballots Stored Represent Ballots Cast

multiple_cast_ballot (bs: Ballot_Store, voters: list[Eligible_Voter]): RECURSIVE Ballot_Store =
IF (voters = null) THEN
bs
ELSE
LET (first_voter, remaining_voters) = (car(voters), cdr(voters)) IN
Cast_Ballot (open, first_voter, multiple_cast_ballot (bs, remaining_voters))
ENDIF
MEASURE length (voters)

votes_stored_represent_votes_cast2: LEMMA
FORALL (voters: list[Eligible_Voter], bs: Ballot_Store):
FORALL (v: Eligible_Voter):
multiple_cast_ballot (bs, voters) ‘ballots
WITH [(multiple_cast_ballot (bs, voters) ‘count) := vote(v)] =
Cast_Ballot (open, v, multiple_cast_ballot (bs, voters)) ‘ballots

Perhaps the most interesting lemma proven is this version of votes_stored_represent_votes_cast.
This version of the lemma requires the multiple_cast_ballot function to ensure that all ballots are cast.
Multiple cast ballot recursively applies votes from a list of voters, filling up a ballot store with ballots. When
the length of the list voters reaches 0, the recursion will stop. The actual lemma checks to see that after all
the votes are cast frommultiple_cast_ballot, they are still in the ballot store after another vote has been
cast. That ensures that the votes stored are the actual votes that were cast, and there are not any extra ballots
that were added. This lemma took a call to induct-and-simplify to solve.

6.3 Vote Cannot Change After Submit

vote_cannot_change_after_submit: LEMMA
FORALL (v: Eligible_Voter, bs: Ballot_Store):
choose (v) = voter_review(choose (v),submit) AND
choose (v) = (Cast_Ballot (open, v, bs)) ‘ballots(Cast_Ballot (open, v, bs) ‘count-1)

We will examine this lemma because even though it is a simple lemma, it is fun to examine. Very
simply, this lemma is supposed to ensure that the vote is not changed after it has been submit-
ted. So, for every voter, they choose their choice ballot, choose (v). After they review their ballot,
voter_review(choose (v), submit), and submit it, it should still be the same (the first line). Also, after
it is cast, (Cast_Ballot (open, v, bs)), the ballot that is in the store should be the same as the one they
chose (the second line). Since it examines the ballot in multiple different locations in the process of voting,
it is an interesting lemma to examine, however, it can easily be proven correct by grind.

6.4 Voter Cannot Access Unauthorized Information

voter_cannot_access_unauthorized_information: LEMMA
FORALL (v: Eligible_Voter, bs: Ballot_Store, ps: Poll_State):
v /= Poll_Worker => Review_Ballots(ps, bs, v) = empty

Finally, we will examine the inability of a user to access unauthorized information. This lemma, which says
that if any voter tries to review the ballots under any circumstances, and they are not the poll worker, then
they only get the empty ballot and are not able to view the ballot store with the ballots in it. This probably
should have been expanded to say that this is true for all people, but we made an assumption that only
eligible voters would be allowed in to use the machine. Whether we state it as for all voters or for all people,
though, it is easily and quickly proven with grind.

7 Surprises and Challenges

There were many surprises and challenges that arose in completing this model. Firstly, modeling in PVS
is difficult. Understanding how the system should work and how to structure it are extremely difficult, and
they both must be taken into consideration as the theorems and lemmas to prove are created; they are all
related.

Also, implementing the model using an incremental method is very useful. It turns out that as more
functionality is added to the model, the size of the model grows exponentially. For example, to increase the
model from the point it is now to the next step, the User Interface, the system would have to take a “’step
back” from what it is now. That is, to include the User Interface with all its functionality, it would have to be
rewritten as a state machine to encompass a version of the model as it is now in each of the states. Choosing
to vote and going to the Vote state would require the user to vote, calling the Cast_Ballot function but
would also have to modify the choose function to interact with the user and then have the completion
switch to a different state. The Review state would have a similar complexity. Therefore, as can be seen
from this small example, as the model is grown, much more would have to be taken into account at each
step. Because of this realization, not all of the lemmas proposed were actually completed — to implement
them would require an exponential change to the model to complete and prove them.

8 Insights into PVS

PVS is a very powerful, yet very complex and confusing language. This project has given me some very
interesting insights into the use of PVS in modeling of a real world system. Basically, I have learned that
modeling in PVS is hard in specifying the model and yet easy when actually trying to prove that model.

First of all, creating a specification is difficult in PVS. The learning curve for PVS is large, but at the
same time, once it is mastered, PVS can be extremely powerful. One difficulty is to move away from
thinking like a programmer because PVS functions can only be defined with one expression. Therefore, a
function cannot do multiple things like a program’s function can do, but all the power of a function must
be expressed in one mathematical expression. That can most easily be done with an IF ... ELSE ... ENDIF
statement. Another barrier to overcome was to figure out how to model the system and not have it expand
beyond comprehension. The more I modeled in PVS, the more I needed to model to keep the lemmas
provable and the function calls also had to be expanded. I think PVS needs a definite design decision before
building up the specification, because it cannot be changed or modified as easily as code.

Another insight into PVS is that general proofs are easy. Every lemma I wrote could easily be proven
with grind or induct-and-simplify, PVS’s big hammers. That means that once a system is formalized
in the PVS syntax, PVS is extremely helpful and powerful at proving the lemmas that need to be proven.
That realization was a blessing while working on this project. It meant that if the lemma could not be proven
with grind, then there was either a problem with the lemma or a problem with the part of the model it was
trying to prove.

9 Where To Go From Here

This model is undoubtedly incomplete. There is so much more that can be added to it, including a complete
User Interface as well as including Network and Power running through the system so that it can deal with
power and network failures. Adding a user interface can more easily be done in a state based system such as
Alloy or by using UML because states are extremely difficult in PVS. Given the opportunity to recreate this
project, a better design decision would have been to create the entire model in a lightweight language, such
as Alloy, because it would have been easier to complete the model and include the User Interface without
using multiple tools. However, once the model has been fully completed, we can use it for many very useful
purposes.

9.1 Check Current Systems

Firstly, the model can be used to generate inputs to test current systems, such as the DieBold voting machines
that have been employed but have closed source coded. The results would show that the system works
without the source being necessary and could be published to ease voters’ minds that their vote was counted.
The inputs could be generated by hand or by an automatic generator, such as TestEra.

9.2 Build New Systems

The model could also be refined into code, which will generate a machine that we know would work right,
according to the Election Accessibility Commission’s guidelines, and has a proven base, this specification.
We can still generate the inputs and tests to check its correctness, but the specification and proofs can also
be public, allowing users to see that the code is correct.

Appendix

PVS Model

9900000009990900000000000099909000000000000900999000000000000099990000000

Person: TYPE+
Candidate: TYPE+ = {Washington, Monroe, empty}
Party: TYPE+ = Candidate

Ballot: TYPE+ = [# selected: Candidate #]
blank: Ballot

Eligible_Voter: TYPE+ = Person
Entitled_Ballot (v: Eligible_Voter): Ballot
Get_Candidates_In_Voters_Choice_Party(v: Eligible_Voter): Candidate

Poll_Worker: Person

Poll_State: TYPE+ = {open, closed}
Operation_State: TYPE+ = {normal, failure}
UI_Input: TYPE+ = {submit, cancel, vote, read_ballots}

choose (v: Eligible_Voter): Ballot

voter_review(b:Ballot, ui: UI_Input): Ballot =
IF ui = submit THEN
b
ELSE
blank
ENDIF

vote (v: Eligible_Voter): Ballot =
voter_review (choose (v), submit)

Ballot_Store: TYPE+ = [# count: nat, ballots: [nat —-> Ballot] #]
empty: Ballot_Store

Cast_Ballot (ps: Poll_State, voter: Eligible_Voter, bs: Ballot_Store):

IF ps = closed THEN
bs
ELSE

(# count := bs‘count + 1, ballots := bs‘ballots WITH [(bs‘count)

ENDIF

Ballot_Store =

vote (voter)]

#)

% Review Ballots at the end of the day (count them)
Review_Ballots(ps: Poll_State, bs: Ballot_Store, person: Person): Ballot_Store =
IF ps = closed AND person = Poll_Worker THEN

bs

empty
00
C0007060
00 3
%% Lemmas and Conjectures to prove
00
0000000000000 0070C0

voters_vote_is_counted: LEMMA
FORALL (voter: Eligible_Voter, bs: Ballot_Store):
(Cast_Ballot (open, voter, bs)) ‘count = bs‘count + 1 AND
(Cast_Ballot (open, voter, bs) ‘ballots (bs‘count) vote (voter))

only_one_ballot_per_eligible_voter: LEMMA
FORALL (pl: Eligible_Voter):
EXISTS (bl, b2: Ballot): (vote(pl) = bl AND vote(pl) = b2) => bl = b2

% Redundant, but gets the point across
voter_cannot_vote_twice: LEMMA
FORALL (pl: Person):
EXISTS (bl, b2: Ballot) : (vote(pl) = bl AND vote(pl) = b2) => bl = b2

voter_can_select_party_affiliation_votes: LEMMA
FORALL (pl: Person):
EXISTS (bl: Ballot) : (bl‘'selected = Get_Candidates_In_Voters_Choice_Party(pl)) =>
vote (pl) = bl

voter_cannot_overvote: LEMMA
FORALL (voter: Eligible_Voter):
EXISTS (cl, c2: Candidate): (vote(voter)) ‘selected = cl AND (vote(voter)) ‘selected = c2 =>
cl = c2

votes_stored_represent_votes_cast: LEMMA
FORALL (voter: Eligible_Voter, bs: Ballot_Store):
bs'ballots WITH [(bs‘count):= vote(voter)] = Cast_Ballot (open, voter, bs) ‘ballots

multiple_cast_ballot (bs: Ballot_Store, voters: list[Eligible_Voter]): RECURSIVE Ballot_Store =
IF (voters = null) THEN
bs

ELSE
LET (first_voter, remaining_voters) = (car(voters), cdr(voters)) IN
Cast_Ballot (open, first_voter, multiple_cast_ballot (bs, remaining_voters))
ENDIF
MEASURE length (voters)

votes_stored_represent_votes_cast2: LEMMA
FORALL (voters: list[Eligible_Voter], bs: Ballot_Store):
FORALL (v: Eligible_Voter):
multiple_cast_ballot (bs, voters) ‘ballots
WITH [(multiple_cast_ballot (bs, voters) ‘count) := vote(v)] =
Cast_Ballot (open, v, multiple_cast_ballot (bs, voters)) ‘ballots

vote_cannot_change_after_submit: LEMMA
FORALL (v: Eligible_Voter, bs: Ballot_Store):
choose (v) = voter_review(choose (v),submit) AND
choose (v) (Cast_Ballot (open, v, Dbs)) ‘ballots(Cast_Ballot (open, v, bs) ‘count-1)

ballots_unaccessable_until_polls_close: LEMMA
FORALL (bs: Ballot_Store, ballot_num: nat):
Review_Ballots (open, bs, Poll_Worker) = empty

cannot_cast_ballots_after_polls_closed: LEMMA
FORALL (voter: Eligible_Voter, bs: Ballot_Store):
(Cast_Ballot (closed, voter, bs)) ‘count = bs‘count AND
(Cast_Ballot (closed, voter, bs) ‘ballots = bs‘'ballots)

voter_must_review _ballot_before_submit: LEMMA
FORALL (v: Eligible_Voter):
voter_review (choose (v), submit) choose (v) AND
voter_review (choose(v), cancel) = blank

voter_cannot_access_unauthorized_information: LEMMA
FORALL (v: Eligible_Voter, bs: Ballot_Store, ps: Poll_State):
v /= Poll_Worker => Review_Ballots(ps, bs, v) = empty
% Only entitled to a ballot if you’re an eligible voter!
voter_can_only_vote_on_ballot_entitled to: LEMMA
FORALL (pl: Person):
EXISTS (v: Eligible_Voter): pl = v =>
EXISTS (bl: Ballot) : choose(pl) = bl => bl

vote (pl)

10

Bibliography

Election Accessibility Commission, ’Voluntary Voting System Guidelines,”
http://www.glynn.com/eac_vvsg/inro.asp.

11

